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All final answers should be written in the answer sheet.
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All detailed answers should be written in the answer book.
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There are 2 problems. Please answer each problem starting on a new page.

HH 28, 8% 18, JCRHFI—HTLK.

Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering
the questions. No working sheets for rough work will be distributed.
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If the answer book is not enough for your work, you can raise your hand. Extra answer books
will be provided. Your name and examination number should be written on all answer books.
A EEEAG A LIS T EH, S EHHES T A NES .

At the end of the competition, please put the question paper and answer sheet inside the

answer book. If you have extra answer books, they should also be put inside the first answer
book.
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Problem 1: Gravitational Waves (26 points) 5| /73 (26 4)

Gravitational waves (GW) are the “ripples of space” predicted by Einstein in 1916. GW are
transverse waves travelling at the speed of light. They are sourced by the change of mass
distribution in space. In 2015, GW were detected directly by the Laser Interferometer
Gravitational-Wave Observatory (LIGO). The detection is not only a verification of Einstein’s
prediction after 100 years, but also provides a completely new probe of our universe and opens a
new era of GW astronomy.

1916 £, ZHMHIHHE 7ERE R ——5 . SI18GERB, DOt ERE, H
VTS 2 (W] P TS R AT A . 2015 4E, BOGT S IR E (LI1G0) K ILF! 13
G173 B RIAEGAE 7 Z N FERE, R R i e T B 511
RBITIE T 5] T3B R AR HI AR

In this problem, we will work in Newtonian mechanics and Newtonian gravity (instead of
general relativity), and ignore the expansion of the universe, unless stated otherwise.

FEAE N, Br AR IARU I 2 Ab S, BATRAE A AF WU s AR G g Gy AS 2 ) SORX
W), HZMT A K.

You may find the following quantities useful here

A5 AR AT e 2 DT HfE -

Gravitational constant 215|775 44 Gy = 6.67x10 "'m3kg 152
Speed of light 1% c =3.00x10%m/s
Mass of the sun & FH i & Mg = 1.99x103kg
Mass of the earth HiEK i &= Mg = 5.97x10%**kg
Radius of the earth HiERF-4% g = 6.37X10°m

Part A. Indirect Evidence of GW (9 points) 5| /13 I E:EHE (9 )

Before the direct discovery of GW, indirect evidence of GW has been found in a binary pulsar
system in the 1970s. The binary consists of two pulsars rotating around each other in circular
orbit with radius R. Let us assume each pulsar has mass M and radius r.

FLAE 20 thed 70 44K, ROCERCOEEXKTE RGeh KL T 51 1A R EAEE . W
kb B A2 g, PRk 22N R WIRSUIE F HEMASEE . SElkFENRERN M,
TN,




Al Calculate the period of the binary system Tp. 2 points
KB R GBI Ty o 245

A2 Calculate the frequency of emitted gravitational wave fgyy. 1 point
KRB RGER 5 JTB IR fow o 14y
The binary system emits GW with power P = % XGEMPRY, where c is the

A3 speed of light. Calculate the values of o, 8, y. 2 points
MR ARG 51 T T RN P=%XG,‘\’,‘M3RV, Hop ook, k| 25
a, By HIE.

Ad After time T, the two pulsars collide due to GW emission. Calculate T. 3 points
B 51 T3 s, 8 T WielJa, PIRUbKeh EaldE . R T,. 341
Apart from GW emission, in general relativity, there is also a correction to
the gravitational potential energy AV, « —1/R? (note the negative sign) for
the pulsar system. For the same values of M,R, will this correction AV .

A5 | increase or decrease T (no quantitative analysis required)? 1 point
E SRS, OGERRT, SUR RGNS AR EEE — M UMBIE | 1Y
Wi: AVgg < =1/R* (FERST). W TRFEKI M MR, AVgp SHINEE
WD BUR RGN EI T ? (TR RIF], AFREEEITE. )

Part B. Direct Detection of GW (7 points) 5| I KRB (7 4)

In 2016, GW were detected directly from distant merging black holes by the LIGO experiment.
2016 4F, LIGO S<u6 4175 3% 1t JI -5 S AF v BB 1 51 0

B1

Assume that we know the GW source is in the minus y direction, as shown in
the below figure.

AN FATHGE 51 S IR 5 Ry TR, R B s

1 point
14y




GW source X

— B
A/ Y/D

Now we measure the GW signal by measuring the change of distance of two
free particles. Which of the following orientation of the particles can detect
the biggest signal? Choose one from A-D below.

A. Along the x-axis;

B. Along the y-axis;

C. Along 45 degree in the x-y plane;

D. Along -45 degree in the x-y plane

PTATE LI EZFA B kLT 2 0] 5B AR IER I 5] 19 24k 13 LA
SRR RBCE R, WSS S EOR? A A-D FIEFE 1.

AT x

B. ¥y i

C. ¥ x-y “FIIH 45 FEA T ;5

D. #¥ x-y “FIRIH-45 FE A7 A

B2

The LIGO experiment has two GW detectors L1 and H1. L1 and HI are
separated by 3x103km. The GW signal first arrived at L1, and arrived at H1
after 0.007s. Calculate the angle between the GW source and the L1-H1 line.
Show the possible direction of the GW source in 3-dimensional space. (Draw
the direction on the figure in the answer sheet.)

LIGO SZIA PN EMEE L1 A1 H1. L1 A1 H1 AHEE 3x103km. 5| k(s
SHARIES L1, MERIE HL. PEREZERN 0.007s. K51 1R S
L1-H1 i3I, o] T =42 m I mrge g on (R 8
A S AN R AR

Z
T 3x10°km y
\ 4 \ 4 '

X/ L1 H1

2 points
25}




B3

For the 2016 LIGO event, the binary black hole system is about 1022km
away from the earth. The two initial black holes are 36 M and 29Mg. The
final black hole is 62Mg. The missing mass has all emitted away as GW
energy. At 1000 km away from the center of the black hole merger event, the
amplitude of GW reaches Ay =~ 0.01 . The energy density of GW is
proportional to its amplitude squared. What’s the GW energy Ej that passes
through the earth?

fE 2016  LIGO KILMG| 1 dftrh, XCRTF RS FEHIERZ)10%%km.
PIAN B IGE R EN 36Mg Al 29Mg, A IFEHI BB EN 62Mg.
REPUR TR EA AT ik re a2, R B A JFH
e 1000 km AL, 51 TR HRIEA Ay =~ 0.01. 5] J1J e =% IE L
FHIRME T 5. SRS HIBRIG 5] Sk A& Eg o

2 points
25}

B4

For the same conditions as given in B3, what’s the amplitude A of the GW
when they pass by the earth?

f£5 B3 MHIAIMIZRAE T, SRS B BIE BRI (kIR A.

1 point
14y

BS

GW can be used to study astronomy and cosmology. Consider the expansion
of the universe as an example. In the Newtonian gravity concepts, the
expansion of the universe can be considered as objects running away
(recession) from us. GW astronomy can be a way of studying the relation
between distance and the receding velocity, and thus studying the expansion
history of the universe.

FATAT LU 51 JJR I 58 RSO A 7l 5. Biltn, BF e gk, 7e7F
WG A, FE KT DA SO R s A T (GRAT). 5l ik
RIC, FTDABFFER AR R & 5 IR AT R 2 Aok &, #ETRIE 78 7 1 1) I
K3 52

For GW events with optical counterpart (for example, neutron star mergers),
the receding velocity is measured by the Doppler effect. The Doppler effect
of which of the following can be used to directly measure the receding
velocity? Choose one from A-D below:

A. Synchrotron radiation from the neutron star

B. Emission or absorption spectrum of elements

C. Charged particles emitted from the neutron star system
D. GW emitted from the neutron star system

X FAEAE G AN BRI 5] TS A (Bl b1 2R 5, TRlEd 2 8
S INRR AR IRAT S o DA IR B A Y 22 3 B 28N TT DL LR
PR ERATIHSE? A A-D L

1 point
14y




A. KB R R AR

B. JTEER IR G BB O 1
C. T EARGURS i R T
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Part C. Interaction between GW and Matter (10 points) 5| A3 FY R KA E/ER (10 4)

The “ripples of space” is too rough for understanding the effect of GW on matter. More
concretely, one can use Newtonian physics to understand GW when its amplitude A is small (the
calculation can be reproduced in general relativity in a local Lorentz frame). In Newtonian
physics, the spatial length is not fluctuating. Rather, the effect of GW on matter can be
considered as a periodic force proportional to sin(wgy, t) acting on matter when GW (assuming
GW is plane wave with constant amplitude) passes by.

TR DRG] P, ISR XA UL T . SRR, 5] IR
g A AR/, BATAT BAE AR S MRS R TH S S 0 R (48 U ig I Y
JRlIgAE 25 &, T RARRE AU A B o AEAR A A, (Al ER AN TR IR AR AL
S S E IR, 51 714V — A IEHT sin(wewt) FITEM 770 X BB BT
TIBAPTIEG RN AL

The amplitude A (assuming A << 1) of GW has the following effect on matter: if two free test
mass particles (each has mass m) are separated by r without GW. With GW passing by its
perpendicular direction (throughout Part C, we assume the propagation direction of GW is
perpendicular to the line of the two particles), their distance changes from (1 — A) to r(1 + A)
periodically. The oscillation of test particle is of the pattern below (we draw many test particles
to show the effect of GW more clearly, but in the problem let us just consider the two particles
P; and P,).

IRIEA A (B A « 1) B951 3B B0 RN &8 584 B l ek 1, &4
Ry WA me A 51 D BaEE R, PSR Z IRy re A 5 T BIRTER
TR LR T IR (A C R, 75 RE S| J1BAR IR TT A 5 PRI T IE L TS 1 T H),
PIAKLF Z R B E r(1 — A) 5 r(1 + A) Z A AL . R ge ks 1 4R3% a0 K BB
Ao (FEE T 2R T iash, DUEEEMER I M. £, Al
REENARLTPAIP, . )
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C1

Now, connect the two particles with a spring with spring constant k and
unstretched length r (i.e. the spring does not change the initial distance
between particles without GW). Assume that the spring is light and the force
that GW acts on the spring is negligible. For k > m w?,,, calculate the
oscillation amplitude A’ between these two particles when GW with
amplitude A pass by, such that the distance between the two particles change
between r(1 — A") and r(1 + A").

Note: Here we assume the two particles have minimal kinetic energy as
allowed in the above setup. (Otherwise additional kinetic energy can cause
oscillations with larger amplitudes for the spring.)

BUAE, R ISRL T SRS R R . SRR REON Kk, KO r
(w2, B 5 FIBOEE R, 58 FEA SR T AR B ) o Bisest
AR, S| PAF AT LR AT L2 . £ k> m wgy KITEDN
T, HEIRIEY ARSI BGEE N, BT RIRIE AT X ATE X
N, G BGEER, R TEEEAE r(1 - A M r(1+ A7) ZIAZfk.

VE: ARBIRL T B RE A2 T LA 2 B A N alisg . (R, A
fshfer] DL E0s RS, DURERFIRNE. )

3 points
35

C2

For the same setup as Part C1, but k < m w?,,, calculate A". Keep the linear
terms in k, and the higher order terms in k can be neglected (i.e. if the exact
result is A + Bk + Ck? + ---, we require that you get A + Bk and you can
neglect higher terms Ck? and so on).

Bk <K mwgy, HAFMAS C1L A, itH A X8, RAFHEREZ L
MR VERY, k BB oy DLARS . (a2, RS2 A+
Bk + Ck?* + -+, WARFRESH A+ Bk. R LAZNE Ck? ZmiBhuil. )

3 points
35

C3

For the same setup as Part C1, but k = m w2, /2, qualitatively describe how
the distance between two particles changes with time. No explicit calculation
is needed.

Wk =mwdy/2, HAZKMS C1 AR, 8 PR IR P78 1) R 2
eI (R AR AL . o E BT

1 point
14y

C4

We’d like to estimate when GW pass through the earth, how much GW
energy the earth can absorb. The earth is a system that the pressure of matter
balances self-gravity. The real earth is too complicated but let’s consider a
toy model of the earth, as two particles at rest separated by r = 6000 km,
each particle has mass m = 3x10%* kg. The self-gravity between these two
particles are balanced by force provided by a light spring connecting these
particles. And the unstretched length of the spring is 7000 km if no force acts
on it. For the GW signal described by Part B3 and B4, with frequency f =

2 points
25}




100Hz, estimate the order-of-magnitude of energy absorbed by the earth from
one period of GW oscillation.

WAV Al TH 2 5] Dy o i BRI, HIERWT DA 2 /b Re s . ke — A
HES LS5 P RSt HSERERIER 2% . K REATHEE
HER BT EAR A 2 R8PS R AR ER 7 = 6000 kmo  BEANRLT (157
EAmM = 3x10%*kg. PRI 20— REFEIER . W NS
PIRL T Z [ 51 1P . A2 77, R RN 7000 kme Xt T
B3. B4 IR, ZEN f =100 HzlI 5] HpfE 5, RAETI ) —
ARG T, BRI e (TR SR

Cs

Black holes are so dense objects that even objects travelling at the speed of
light (such as GW) cannot escape. For a black hole with mass the same as that
of the earth (and at the same location as the earth), calculate the amount of
GW energy that the black hole absorbs for the event described in Part B3 and
B4.

PR — A U A R A RIME LOGIEIS S R (sl 11ik) ANRE
WEH B . FHRE AR, SHERA RN R, T 5HERERER
fr#E . XT B3, B4 TR G IPAF T, KL BRI 51 773 e

Ho

1 point
14y

END of Problem 1
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Problem 2 Synchronization (34 marks) FZPBL% (34 43)

Synchronization is a very common physical phenomenon. As early as in the 17" century, the
famous Dutch scientist Christiaan Huygens observed that when two pendulum clocks are
suspended from a common beam, they tend to oscillate in synchrony. In part A of this problem,
we will consider a model of this phenomenon. In part B of this problem, we will consider a
modern example of synchronization. Students can work on either part first before working on the
other part.

A0 — AR W BB R . FAE 17 D, 2544 BT 22 R 5 0 HLI 5 22 « BB il
SR, U PR A B EEE R — R B, EANEESFEPRYG . EXARER A
A, BATTR S IR A IR A — MR AR B MR T, AR S RE AN
IR RG] R S5 At — B, B5Em &k

A. The Pendulums (23 marks) B8 (23 )

A single pendulum consists of a bob with mass m suspended vertically from a fixed point with a
massless string of length L, subject to gravitational acceleration g. Let q(t) be the angular
displacement of the pendulum from the vertical at time t. When the bob moves, it encounters a
constant frictional force of magnitude mLb in the opposite direction of motion.

AR H AN TEmENISRA R, PN A T RS, JFRBEINnEE g
g, @1 RARE, KENL. {ERME, SPRENEETREAME NqE). 4P
YRy, A —8BUEN mLb WHEE BEE IE R T Eiash i [ J7 ) L.

Write the dynamical equation of q(t) for small oscillations. 2 points

ALl 2 RS g (0 03 712 7 FE 24

Remark: To keep your equation simple, you may introduce the angular frequency

ks N VTR ACE R, A5 N

w={?
L’

and use the sign function defined by

A T T Pfr e S IE 8 PR 5
1forf >0,
signf =< Oforf =0,
—1for f <O.

To compensate the loss of kinetic energy due to the friction in each cycle, the pendulum receives
a kick every cycle. To simplify the calculations, we assume that the kick takes place when q =
—b/w? and its angular velocity is positive.

N T AME TR A b e BERE S P S BB ek, SRR RIS 2 B — kB sl .
Tt 5, AMR B K EAEq = —b/w? I H 2B 1 M8y IER .



A2

Suppose that the angular velocity of the pendulum is u,, immediately after
the n™ kick. Calculate q(t) and ¢(t) in the cycle after the n™" kick. For
convenience, we choose t = 0 at the n'" kick in this part and below.

R ¢ B4 HA) O B AE BB B 50 J5 B ) Ay, o FE SR80 ) 1 40
B, W RqOMGE). TR, ERE LR E G, FATRAE
FEnIRGEHII )Nt = 0.

For clarity, give your answer in three parts:
NG EERC L, 1H o = ER g A 5

(a) The first quarter of the cycle,
(a) B2 —HI I,

(b) the second and third quarters of the cycle,
(b) 55 A =AY — K F 3,

(c) the fourth quarter of the cycle.
(c) ZE PP 5> 22— HI I

2+2+2
points
2+2+2

A3

Suppose at each kick, a fixed amount of kinetic energy of the magnitude
mL?h?/2 is injected to the pendulum, where h has the dimension of an
angular velocity. Calculate the relation between u,, ., and u,,.
BRI B SIN, GEIEN mL2h?/2 MEhRepE B g, Hdp
WA AEEREN . T B, 2w, AR R

2 points
25}

A4

What is the value of u,, after many kicks?

a2 mEEhE, u, WEELZTA?

2 points
25}

AS

Suppose that at time t, during the first quarter of the cycle after the n™" kick,
the pendulum receives an angular impulse equal to mL?a. Calculate the time
at which:

B AE IR 3N G I — U2 — A, B THE N mL2a
HIfE. THE LU S GLI I A]

(a)the friction changes sign the first time, EE4% 7} 58 — X A8 77 [A] B,

(b) the friction changes sign the second time, BE#E )55 — IR AL J7 [H] i,

(c) the pendulum receives the (n + 1)™ kick. H4E5Z 5| 5n + 1K B EHT .

Give your answer to the first order in a.

ERMFE AT Eal)H B

3 points
35

10




A6

Suppose that the time t, at which the pendulum receives an angular impulse
equal to mL?a is in the fourth quarter of the cycle after the n*® kick instead of
the first quarter. Calculate the time at which the pendulum receives the
(n + 1)™ kick. Give your answer to the first order in a.

B RIRIEZ IR mL2a B[t 2 AE SBn X5 Ja B 58 D0 AN 7 2
—IMARE N2 — A TR R B + LIRS
). ERHREXEIT Ea )P

2 points
25}

Now consider two pendulum clocks. Let g, (t) and g, (t) be the angular displacements of the two
clocks. The bob mass m, length L, friction parameter b and kick size h of the two pendulums are
identical. Suppose that when q, = —b/w?, pendulum 2 sends a small angular impulse equal to
mL?a on pendulum 1, and when q; = —b/w?, pendulum 1 sends a small angular impulse equal
to mL?a on pendulum 2. (Here, a > 0.)
ILTE % R/ B4R . BTN AR (0 A R 00 20 (D P g (0) o BIAS AR (K /NI B
KIEZL. FEHESHOMGE KN R ik tq, = —b/w?i, $4E 2 K — M EE

RmLPaf )/ NEFERGRIE 1. Hq = —b/w®I, AR 1R —DMEUE AmL? a i)/ AT &

2. (XHa>0.)

A7

Suppose the phase lag of pendulum 2 relative to pendulum 1 is ¢, at the
beginning of n™ cycle of pendulum 1, and 0 < ¢,, < /2. Calculate the
relation between ¢,,,, and ¢,,.

RBAERAE 1 B NIRRT, B3 2 A T8 1 MARGLR 5 2
by HHFO0< ¢, <m/2. R EPp M, ZHHFIKFR

4 points
453

A8

When ¢,, is very small, calculate the number of cycles for ¢,, to reduce by a
factor of 10.
o, AW D, T H o, I 10 18 i s B F L

2 points
25}
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B. The Power Grid (11 marks) M (11 43)
Synchronization is an important concept in the transmission of electricity in the power grid. The
power grid is a network of nodes and links. Each node is an electric generator or other power
consumption devices. The links are the transmission cables. Electric power is transmitted in the
alternating current (AC) mode at 50 Hz or 60 Hz at a fixed voltage. However, the AC voltage of
each node in the network has a slightly different phase.
[ 20 7 ol I FE T ) — D BB . R AN Y RO BB A BRI IR 2% o RN R
R MBI AR R & . BERR R AE RIS, HJIs HACHE (AC) BEECEL 50 Hz 5% 60
Hz Wi 4 [ 52 i AR . (2, WIE P A5 f B 52 i B s B A I A [R] B AR AR

2

B1

Consider a transmission cable connecting nodes 1 and 2. The inductance of
the cable is L. The electric potentials of nodes 1 and 2 are Vj(t) =

V cos(wt + 6;) for j = 1,2. Calculate the time-averaged power transmitted
from node 1 to 2. You may neglect the time dependence of 6.

FRIERT A 1M 2 g . RS UKL, 1AL 1A 2
NV;() =Veos(wt +6;), Hrbj =1,2, tFEMNAT A 1 ARSI 2 1)
I )P X D238, ARAT LA ZIE 6, FA I TR AR At

3 points
35

A network of electric generators and motors, labeled j = 1,2, ..., N, are connected with each
other. Their electric potentials are Vj(t) =V cos(wt + 9,-) forj =1,2,...,N, and the inductances

of the connecting cables are L. The generator or motor at node j rotates with the phase angle
wt + 6; and its moment of inertia is I. The external power source or drain is P; (P; > 0if jis a
generator, and P; < 0 if j is a motor). At the same time, the power dissipation due to friction is
given by k(w + 6,)?/2 atnode .
—NAES,  HR AU RSN e R R, R AL R EILIARIE R j = 1,2, .., N

BT HEFA V@) = Veos(wt + 6;), Hj=1,2,..,No FITEZEEANTS R0

1k
ém )

FCHURONL. H AULEIR LB ST L A f ot + 6,156, JCRERNI R T AR AR
RS RE TN 4P, R R HAL, P> 0. WIHLREBEIHL, P<0) . [N, 77
R RS T 2 (0 + 6,) /2.

B2

Derive the dynamical equation for 6; as a function of time. Assume that the
rates of change of 6; are much less than w, such that the dynamical equation
can be approximated by retaining only terms up to the first order of 6;.

it 0; DAR [ 2 B SEEG 30 2 5 Rk T RO IO 3E D T o,
1550 /327 R ] Il A DR B 220, 19 58— Bir TR AL o

2 points
25}

The dynamical equation of 6; is similar to that of the coupled oscillator network shown in the
figure. It consists of N particles free to slide on a smooth circular rail of radius R without
collision. Each particle has mass m and is subject to a force F; for particle j in the tangential
direction of the circle. When a particle moves, it experiences a damping force that is equal to
minus the velocity times the damping constant b. Each pair of particles is connected by a spring
of very short equilibrium length and force constant k.

12
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6; 18 7152 T R AR T B Fros U S Ik a4 . B INAS RTAE AR R8T 0
B _EH s s R R T AL BRI T R ym. KL R R DI T [ %
B4 FRER]. SR Bshit, e BRI /15 T R LI JE % 8b i B . BEXR
TSP P R R B B R A A kT

B3

Derive the dynamical equation of the angular positions 6;, and fill in the table
on the answer sheet with the physical terms for the coupled oscillator network
and the corresponding terms in the power grid.

TN EG BN T RE L, B AR LR WIS MG IR a4
[ 5% 11 20 B TR R, (X 0 PR S A B

3 points

34

B4

Consider a fully connected power grid with N, consumer nodes and N

generator nodes, and friction is negligible. Each consumer node consumes
power P and the total consumed power is evenly provided by the generator
nodes. Calculate the phase difference between the generators and the
consumers at the steady state.

I8 N A DR T I A A BT i 2 RS 58 4 3 Fe MY
Horp BEAT A AT . A DIAE R T REAEDI R P, I H AR
R A FBLS it 215t T AR IRZS TR A LA DO FEBE % 2 8] A AR A6
%

2 points

24y

BS

Calculate the minimum number of generators to maintain effective electricity
transmission in the power grid of part (B4).

VELAE (B4) HbH T2 BHERF (A AR, R LR R D
HEL DU

1 points

143

END of Problem 2
i) 8 2 5¢
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