Pan Pearl River Delta Physics Olympiad 2020 2020 年泛珠三角及中华名校物理奥林匹克邀请赛 Sponsored by Institute for Advanced Study, HKUST 香港科技大学高等研究院赞助 Simplified Chinese Part-1 (Total 4 Problems, 40 Points) 简体版卷-1(共4题,40分) (9:30 am – 12:00 pm, 8 August, 2020) Please fill in your final answers to all problems on the answer sheet. 请在答题纸上填上各题的最后答案。 At the end of the competition, please submit the <u>answer sheet only</u>. Question papers and working sheets will **not** be collected. 比赛结束时,请只交回答题纸,题目纸和草稿纸将不会收回。 ## 1. [10 points] A static insulating container of mass M and cylindrical shape is placed in vacuum. One of its ends is closed. Initially, an insulating piston of mass m and negligible width separates the volume of the container into two equal parts. The closed part contains n moles of monoatomic ideal gas with molar mass M_0 and temperature T. Assume that the container wall is smooth. **1.** [10 分] 将质量为 M 的圆柱形绝缘容器静止置于真空中。其一端是封闭的。最初,质量 m 和宽度可忽略的绝缘活塞将容器分成两个相等的部分。封闭部分包含 n 摩尔的单原子理想气体,其温度为 T,摩尔质量为 M_0 。假設容器為光滑容器。 - (a) [2 points] Assume that the state of gas during its expansion can be approximated by thermal equilibrium condition, what is the temperature of the gas T_f when the piston left the container? - (a) [2 分] 假设气体在膨胀过程中的状态可以通过熱平衡条件来近似,求活塞离开容器时气体的温度 T_f 。 - (b) [4 points] At the moment when the piston leaves the container, the gas and the container will move with speed v and the piston will move with speed u. Find v and u. - (b) $[4\, \mathcal{G}]$ 在活塞离开容器的那一刻,气体和容器将以速率 v 移动,而活塞以速率 u 移动。求 v 和 u 。 - (c) [4 points] When all the gas has left the container, the final speed of the container further changes from v to v + v'. Estimate v' using the kinetic theory of gases. Assume that the final speed of the container is much less than the thermal speed of the molecules. - (c) [4分] 当所有气体都离开容器后,容器的最终速度进一步从v变为v+v'。使用气体动力学理论估算v'。假设容器的最终速度远小干分子的热速度。 The gas constant is *R*. There is no heat exchange between the gas, container and the piston. The change of the temperature of the gas, when it leaves the container, can be neglected. The gravitation of the Earth can be neglected. 气体常数为 R。气体、容器和活塞之间没有热交换。气体离开容器后的温度变化可以忽略不计。可以忽略地球的引力。 2. [10 points] A spherical dust particle falls from rest through a water mist cloud of uniform density. The initial mass and radius of the spherical dust is M_0 and R_0 respectively. The rate of accretion onto the droplet is equal to the volume of the mist cloud swept out by the droplet per unit time. Let ρ be the density of water mist and g be the gravitational acceleration. We assume the density of water mist ρ does not change after accretion and ignore air friction other than that from accretion. 2. [10 分] 球形尘埃粒子从静止的地方通过均匀密度的水雾云落下。球形尘埃的初始质量和半径分别为 M_0 和 R_0 。液滴上的吸积率等于每单位时间被液滴扫出的雾状云的体积。设 ρ 为水雾的密度,g 为重力加速度。 我们假设水雾的密度 ρ 在吸积后没有变化,也忽略除吸积过程以外的空气摩擦。 - (a) [2 points] Let M(t) and R(t) be the mass and radius of the droplet at time t respectively. Find a relationship between $\frac{dM}{dt}$ and $\frac{dR}{dt}$. - (a) [2 分] 设 M(t) 和 R(t) 分别为液滴在时间 t 的质量和半径。求 $\frac{dM}{dt}$ 和 $\frac{dR}{dt}$ 之间的关系。 - (b) [2 points] Find the speed of the droplet at time t. Express the answer in term of ρ , R and \dot{R} . - (b) [2 分] 求在时间 t 的液滴速率。用 ρ , R 和 \dot{R} 表示答案。 - (c) [3 points] After a long time, the radius of the droplet increases with time as $R(t) = bt^n$. Find b and n. Express the answers in terms of ρ and g. - (c) [3 分] 长时间后,液滴的半径随时间增加,满足关系式 $R(t)=bt^n$ 。求 b 和 n。用 ρ 和 g 表示答案。 - (d) [3 points] Find the value of the acceleration of the droplet after a long time. Express the answer in terms of ρ and g. - (d) [3 分] 找出长时间后液滴的加速度值。用 ρ 和 g 表示答案。 - 3. [10 points] There is a solid metallic sphere of radius R, which is cut into two identical hemispheres. The cut surface is coated with a thin insulating layer of thickness d, and the two parts are put together so that the original shape of the sphere is restored. Initially, the sphere is electrically neutral. Then one of the hemispheres is given a positive charge +Q while the other one remains neutral. You can assume $d \ll R$ in this problem. - 3. $[10 \, \%]$ 有一个半径为 R 的固体金属球,被切成两个相同的半球。切割表面涂上一层厚度为 d 的薄绝缘层,并 +Q Neutral 电中性 R - (a) [4 points] Find the charge on each surfaces of the sphere. - (a) [4分] 找出球体每个表面上的电荷。 - (b) [3 points] Find the electrostatic interaction force between two hemispheres. - (b) [3分] 找出两个半球之间的静电相互作用力。 - (c) [3 points] Find the electrostatic energy of the sphere. - (c) [3 分] 求球体的静电能。 Insulating layer 绝缘层 - 4. [10 points] Figure 4 shows a hollow glass tube with outer radius R and inner radius r respectively. The refractive index of the glass is n. From the outside air, the apparent inner radius of the tube is r' (i.e. the radius of the hollow portion observed from outside appears to be equal to r'). - 4. $[10\, \%]$ 圖 4 表示一支中空玻璃管,其外半徑為 R,内半徑為 r,玻璃折射率為 n。由外面空氣中看來,該管之視內半徑為 r' (即空心部分的半徑從外面看起来等於 r')。 - (a) [2 points] Find the ratio of the actual inner radius to the outer radius $\frac{r}{R}$. Express your answer in terms of α , β and n. - (a) [2分] 求真內半徑與外半徑的比值 $\frac{r}{R}$,以 α , β 和n来表示。 - (b) [3 points] Find the ratio of the apparent inner radius to the outer radius $\frac{r'}{R}$. Express your answer in terms of α , β and n. - (b) [3 分] 求視內半徑與外半徑的比值 $\frac{r'}{R}$,以 α , β 和n来表示。 - (c) [5 points] If R = 4.0 mm, r' = 0.50 mm and n = 1.6, calculate the actual inner radius r of the glass tube up to 2 significant figures. - (c) [5 分] $\ddot{z}R = 4.0 \text{ mm}$, r' = 0.50 mm, n = 1.6,計算玻璃管的真內半徑r,答案準確至兩位有效數字。