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All final answers should be written in the answer sheet.

P iR & RE S ERA .

All detailed answers should be written in the answer book.

P S REE BB L.

There are 2 problems. Please answer each problem starting on a new page.
HH 28, %18, JURHF—HE.

Please answer on each page using a single column. Do not use two columns on a single page.

B AR I B —EFN R 7 U . AN AT BLAE — D4R DOWCE 517 U L

Please answer on only one page of each sheet. Do not use both pages of the same sheet.

TR AT ES . A DURTUES .

Rough work can be written in the answer book. Please cross out the rough work after answering the questions. No
working sheets for rough work will be distributed.

R LS AEZ R E, FEE BEAAARR LR B, AR R R

If the answer book is not enough for your work, you can raise your hand. Extra answer books will be provided. Your
name and examination number should be written on all answer books.

FIRHE AT ST, g GRS MRS

At the end of the competition, please put the question paper and answer sheet inside the answer book. If you have
extra answer books, they should also be put inside the first answer book.
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Problem 1: Quasicrystals (28 points)
[B138 1: ik (28 77)

In 2011, the Nobel Prize in Chemistry was awarded to the discovery of quasicrystals. Nowadays, quasicrystals
can be found in many applications such as the hardening of steel. How do quasicrystals differ from ordinary
crystals?

2011 F, ERENEIERRENRUFER, 25, RMNETRZERERRNONA, BIa0RARE
. REAERGTSEBREEFEIAR?

In crystals, atoms are arranged in a periodic manner. The structure of crystals is known by periodically
replicating the basic unit of the arrangement of a small number of atoms (Fig. 1 (Left)).

wRER, FrUEHETIES . BERHMES SERTHINERRN, TN RE
Mzt (B1 (&) ) .

On the other hand, atoms in quasicrystals are arranged in an orderly manner, but the local arrangement cannot
be repeated by replication (Fig. 1(Right)).

A—TH, ARETHRTUEFNIRES, EE2RFNHIAEREIEH MBS AN (K1
(&) ) .

However, quasicrystals are far from random. They have a “hidden order”. For example, the structure in Fig.
1(Right) can be considered as a 5-dimensional cubic structure projected onto two dimensions. To understand
this idea, we will consider a 1-dimensional quasicrystal projected from a 2-dimensional square lattice in this
problem.

B, FEREZZAZHEIN. W51 BEORE . flw, B 1 (F) feE8TEEA
REBN "H=EIR S LT EM . A TEBXNME, BNEREPEEEN_ETIRIRE N —4E
RiE,

Fig. 1: (Left) A crystal (Right) A quasicrystal, known as Penrose tiling.
1: (&) & (A) #RA Penrose tiling BE R,



A. Structure of Quasicrystals (14 points) ERENEHE (14 9)

Figure 2 shows a two-dimensional lattice in which the atoms are located at (x;,x,) = (m,a, m,a) where m,,
m, are integers and a is the lattice spacing. In Section A, we assume a = 1. We construct a stripe defined by
the condition

2 BT N8R, HRRTAT(x,x2) = (nia,mea), my. myZBEE, MaRRAIGEE.
AP, BUMRKRe =1, BIEE—TEKT, HEXA

1 X1
_Sx2<_+T.
T

T is the irrational number 7 = (1 + \/g) /2. The inclination angle a of the strip is given by

TEXEH =1 +V5)/2., EENHAH

1
a = arctan—.
T
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Fig. 2: Illustration of the projection method of obtaining a quasicrystal. & 2 : l/,{?ﬁ =N ET/E EIEI'TZ':



We project all lattice points lying within the strip to the line L; defined by x, = x; /7. Since 7 is an irrational
number, the projected atomic positions on L; form a 1-dimensional quasicrystal. The lattice spacing now have

two possible values.

BATBA TR HFANAE BT EIL &L, LINENX Y, =x/t. BTTELER ®RPIL%

FRRTFNEEREN T —4ERE, IE, RREEERDTENE.

2

Calcu'la'te the lengths of the lattice spacings A and B. Write your answer as an expression 2 points
Al (\:ontalnlng\‘r. - 243

TTERIEEE AN B, ZEEMEHFREAXEH.

Write the position z(m,, m,) of the atom of the quasicrystal projected from

(m4, m,) onto the line L, (that is, the displacement of the atom from (0,0)). Write your )
A2 | answer as an expression containing t. I point

BT MOmy, my) B EIL S R RERT R Bz (m,my) (BIMO0) BETH | 17

%) . ERUEHMREATH.

Calculate the average lattice spaf:ing d when the lattice length is very long. Write your 2 points
A3 answer as an expression containing T ‘ 245

TTEYRRKERKNNEYRZEE, EEMNEHFREAXETH.

Note that the configuration of the lattice spacings A and B are no longer regular. It was observed that the

configuration can be generated by the famous Fibonacci sequence, which uses the substitution rule

AR, BEEE A BAHESAEHN,, FAIWRE| RISHEMT IXHEZE &R Fibonacei sequence 4
By, 1ZFR5E B E AR

A—- AB, B - A

For example, the configuration of the first seven spacings ABAABABA in Fig. 2 is obtained by five
substitutions starting from B.

Bign, & 2 FEEMEEEABAABABARSHEFIZ@IE M B FHRRI L ME IR ST

Ad Write the sequence after six substitutions starting from B. 1 point
5 TN BFRINRERFNFT. 193
Let ny and ng be the number of A and B in the sequence. Write the numbers n and ng 2 points

A5 | of A and B after one substitution. g N
S, Hing AFF|HAFIBEE . BET—XE&#H/E, AT BNEE, Mng.




Calculate the ratio n, /ng when the sequence is very long. 2 points

A S IR KT B/ 27

For further analysis, we introduce two mathematical notations. For a real number x, |x| denotes the integer
part of x, and frac(x) denotes the fractional part of x. For example,

AT =2, BAIBIARNEERFS ., TR, |x|Fk- xAOBEERS, Mfrac(x) NFRRxH)
INEGER Y flEn,

[1.73] =1 and frac(x) = 0.73.

Labeling the atom at (0, 0) as j = 0, the position of the jth atom in the quasicrystal is given by
¥00,00MEFIRCAH =0, AREPENEFINEN

zj = jd + frac (];) A.

A7 | Derive A as an expression containing 7. ## SARNFRIEAR, NP EH7T, 2 go;jr\lts
AS Calculate the coordinate (m,, m,) of the atom with j = 101. 2 points
&) = 101 R F B HR(my, my) . 29

B. Diffraction Pattern of Quasicrystals (14 points) EREHNELTHEZE (14 4)

Quasicrystals were first discovered by observing their characteristic diffraction pattern.

FERAEREEBEUSR AT HERE LI,

Fig. 3: Electron diffraction pattern of a quasicrystal. & 3 : ERANE FLI5E,



Figure 3 shows the electron diffraction pattern of a quasicrystal. A crystal is said to have n-fold symmetry if
its diffraction pattern is identical if it is rotated by an angle of 2 /n.

3 ETR—ERENETLIHE. MREFREAEH 2/, HETHERER, WizEEEEn
BEXFRM .

Bl Identify the symmetries of the diffraction pattern in Fig. 3. 2 points
FAAE 3 PTH R R AR 249y

To understand how the diffraction pattern can be derived from the projection method, we first consider the
diffraction pattern of a 1-dimensional crystal.

AT TRNENRE EZTBEITHER, RMNEEEFER—ERENTTHER.

VeEN

Fig. 4: Light diffraction by a lattice. [ 3 | BEAILLTES .

As shown in Fig. 4, the 1-dimensional lattice consists of N atoms. The position of atom j is x;. A light wave

with wavevector K; is incident on the lattice at an angle 8 with the normal direction and is diffracted at the
same angle with the normal. The diffracted wave has a wavevector k; with the same magnitude as K;. The
change in the wavevector is denoted as

WE 3 R, —#HERRANDRTER. RN ERY. WRASEIREH, ASEXE K,
5E&HAES, TIRHETRSEEZRBRNBE. TI5ENEXk, NR/NSKEE. KRHEWL
RKTA

q-= kd - ki'

The magnitudes of the wavevectors are denoted as |K;| = |K;| = k and |q| = g. Note that q is a monotonic
function of the diffraction angle 8, and so can represent the diffraction direction.

R BARNET k| = (k| = kRlql = q. 38, 24T BOMAIBRE, FIL T R TATE T
&,

B2 Write the expression of g as a function of the diffraction angle 6. 1 point
SRt OB RIFAR . 14




The positions and magnitudes of the diffraction peaks are given by the structure factor defined as

PIHIENMEN AR/ NHEME AL, HEXA

N 2 N z

1 1
S(q) = N Z cos(qxxj) + N Z sin(qxxj) ,

=1 j=1
where g, is the x component of q. EH1q, 2qHxD =,

Remark: Students who are familiar with complex numbers may use the definition
1 ABERNRFTUERTIIEX

N 2

S(q) = % Z exp(igxx;)| -

J=1

Consider a 1-dimensional periodic lattice in which x; = jd. ZE—#%EESRI%, Hix = jd.

What are the values of g at the peak positions of the diffraction pattern of the periodic

B3 | lattice? 2 goﬁi;\ns
ERHSRENTTHEREF, BEMELNEREZ D ?

Now consider the case that each atom in the periodic lattice is “smeared” out to a length b, where b < d. This
means that the density p(x) of the lattice becomes

MAZEBUTER  BREETHNENETEHE HE 2KED, Hbb<d, XEREEERHNE
Epx)ZEH

1 )
P(x)=5 ]dSXS]d-Fb,
0 otherwise.

The diffraction peaks do not have the same magnitude any longer. £T5fIE AR EFHE K/,

B4 Calculate the magnitudes of the diffraction peaks at q of the smeared lattice. 2 points
TTERBRRQLLTEIERI K/ 249y

Now consider the quasicrystal in Part A. Since there are two incommensurate lattice spacings in the quasicrystal,
its diffraction peaks are given by wavevectors with a pair of indices,

WEZE A BROERE. BTHEERETFERMABRNEBEE, FWERENLTSIERR
B —NEHRERSH,



Consider the phase ¢ = g, 2; in the structure factor of quasicrystals. Write the
expression of the phase in the form

ERERETEMET S = gmazjo BE THIFIER 2 points

B5
¢ = 2nF + Xfrac (];), 25
where F is an integer and X is a real number.
HAPFZEH, XELE
B6 Calculate the magnitude of the diffraction peak at q,;,,, . 2 points
T EE G LRLTHIE K/, 249y

Find (m, n) for the highest diffraction peak in the range 0 < n < 3, excluding (m,n) =
(0,0). Then calculate g,,, (in units of 27t/d) and the magnitude of this peak. 3 points
BT | IS0 < n < SNBBETSE(M ), FEIEm,N) = (00), REHHG, | 34

(M2m/d R Ehr) FMIZEERKR/N.

Problem 2: Black Hole Physics (32 points)
[B7H 2: RiEMEE (32 43)

Black holes are the most mysterious objects in our universe. A black hole is surrounded by an event horizon
(horizon for short). Anything that falls through the horizon into the black hole cannot escape. If a black hole
is stationary, not rotating, has no electric charge, then the horizon is spherical, with radius R = 2GE /c*,
which can be also written as R = 2GM /c? using Einstein’s energy-mass relation E = Mc?. Here G, ¢, M and
E are the Newton’s constant, speed of light, and mass and energy of the black hole, respectively. The
horizon area is thus A = 4mR?. The singularity “inside” the black hole is one of the greatest mysteries in the
theory of gravity, since the energy density of the singularity appears to diverge and the classical general
relativity fails to operate there.

RIAZTHPRFRORE ., REESHIST (ERUST) 5, B EERRRNREA L
k. MRFBEERESH, PREGAHEE, WREARSKRLH, HFRZAR=2GE/c*, F}RER
HrBMREER R E = Mc?, RRALRBITUSER =26M/c? . KB G, ¢ M RE DA AFHEINE
. R, BRRENREFNERZ. WAERE A =41R*. RERNBHFTLARRHUHNSINARZ
—, AFRME EERETESFK, K47 NENRAFEM.




In the following, we will discuss the formation, thermodynamics and rotation of black holes, and how a
civilization may use black holes as power plants.

HEABH, FATBTHERFNEA. BhFEMEEERR UENRREREENTTREML,

Note: To avoid the usage of general relativity, in this problem, no concepts about curved spacetime will be
introduced. You do not need to think about curved spacetime when working on this problem.

E L AEREA XAENRFIR, ABBAZFIENEEHEFRS. ERANITEEZENTEH.

PART A. FORMATION AND PROPERTIES BRI B R

We study a simple formation mechanism of black holes. Consider a spherical shell of photons (quanta of
light) is moving towards the center of the shell to form a black hole. The self-interaction of the photons can
be ignored.

BMAR—NERARBEEANG . ZE—DET ENET) KR, XPIRTPHALFEIRTH O
Z5, MEMAR. N2t TZENEHEEEM.

Assume that the wavelength of photons is short enough, and thus the shell is thin (this
short wavelength assumption only applies for this Question Al, and may not apply for
later questions), which of the following describes the formation of the horizon and the
singularity of a black hole?

BRRAFEKEBRE, FRERRRE (X MNMEKITM R AEA/NE, Bl AL 4,
EEMBERRNAFRZEEKEN . THR— 1 EGRER T REAANT S0

TR ?
¢ t t t :
Al (A) (B) (C) (D) I point
15
= Photon Shell / . FEK3% / FFEKFT
VW Singularity / &85 / T = ==== Horizon / R 5} / 57
Suppose the photons in the shell all have wavelength A. Thus, the energy of each
photon is E,, = hc/A, where h is the Planck’s constant. To make a black hole with 1 voint
A2 | horizon radius R, what is the number of photons N needed? IPC;;\H

RIRRFTRPIEETHUKKERZ 4. BT, BMETHEENE, = he/A, Hiph
EEHREH. HTRARAFZARFRR, KIEFBHHETEN.

Entropy of infalling photons 134533 & # ¢ 7 A9 i



For a shell of N photons, the entropy can be written as Sy, = « k;lNCZ. Here kg is the
Boltzmann’s constant and « is a dimensionless constant of order 1. (In the below
analytical formulae, a should be kept explicitly. In order of magnitude estimations, a
A3 | can be set to 1.) Find integer numbers c¢; and c,.

N KT RB RS TINE B Sy, = a kON2, KB ky SR/REBEE, L3
@ ~0(1) BN ERMER. (ETASENEFART, ERBe, ERRRE
b ST o BOMEERCY 1) REH ¢, F ¢,

1 point

Entropy of the black hole 2 i

Taking 4 = R, we have the entropy of the black hole § = Sy,,. (If A > R, the photons
are too non-local to form a black hole. Thus, the A = R photons carry the largest
amount of information.) Write S in terms of R, @ and the constants of Nature. 1 point

AT 1igA=R, RIVGBIBRANMES = Syyo (X2EN, WRA>R, WAFEREE | 14
AR, FEERBHEERE T, 1 =RAEFINETRZNER. )IEAR aFE
AYIEEHRT S,

Based on the black hole entropy formula, which of the physical observation is incorrect?
Choose one from the below answers.

A. Black hole entropy is an interdisciplinary research direction of thermal, quantum and
gravitational physics.

B. The black hole entropy is an extensive quantity which scales as the volume of the black

hole.

C. The existence of black entropy indicates that black hole should contain many
microstates. :

AS 1 point

D. Black holes are gravitational systems with non-perturbative quantum effects, and are 14>
thus a key to quantum gravity.

RFERFFO A, TEBHEHERA ? FRAEF—T.

A RRBERNFE. BFERNSI DA ER.

B. KRR &, SRFMEIRAMIELL.

C.REFEM, PIUBRIZFEBYIRE.

D. RAEEFFBILETHILNEINARS, FUEBRE TSI NHN—EHRX.

Part B. Entropy bounds of nature 2 %R

It is conjected that black holes are the densest objects of nature, not only in energy, but also in entropy and
information. Based on this observation, estimate the quantities in Part B. By estimate, you need to get the
correct order of magnitude. Order one coefficients may be neglected.

PEFFFEN, REMEER LEEEESANYE BEREER. ERRERANYE. £T
XAMEN, EXS Part B PRVMIEEMEBEREIT. RAFERMEITERNEER. 0(1) WEHTUZ
& o

10



Bl

Nowadays, computer hard disks store information with a day-by-day increasing
information density. However, to store information, enough number of states, and thus
enough entropy is needed. This is understood from Boltzmann’s statistical
interpretation of entropy: S = kg In (), where Q is the possible number of states of the
system. Consider a spherical hard disk in the vacuum, with capacity 1Tb = 10'? bit.
What is the minimal radius of this hard disk?

HEl, BREETNEFENESREMREX, B2, ATHEFHEER, RINFTE
EBZIRESE, MIAFTEEBZNE. X MMERZEBNHITHEETE
H:S=kylnQ, HEFQRZRGITELTHRENEE. ZE—NPETHHIBKE
R, BFEAN1Tb=10"Lb4F, KEEN&/NFE.

2 points

243

The Bekenstein Entropy bound Il 5 1B fE R

B2

Consider a clump of matter with mass M,,, (and thus energy E,;,) and radius R,,,. When
this clump of matter falls into a black hole (the black hole has existed before the clump
of matter falls in), we require that R,,, should be not greater than the horizon radius of
the initial black hole, to make sure this clump of matter can fall in. Denote the entropy
of this clump of matter as S,,,. Find a universal upper bound of S,,,, in terms of E,,, and
R,,, but independent of parameters of the black hole, or Newton’s gravitational
constant G.

EIRREA My, (FTIAREEA En), F12A Ry N—BWR. HXBYREH—
REN (W%, RREMELHFET), FMNEK Ry AARTREAKAUR
2, AAXHEAEWHERXRY IEHEE. FAXMNIE, KXY RAE S, B9
EEER. (REEH Sy B ERBEM En M Ry R, BB TRIFHNSE,
AT+ HEH#HG,

Note: Necessary steps of derivation is required.

x BESHLENHESTR.

4 points

443

B3

For a 1Tb hard disk with 1nm radius, what is the minimal mass of the hard disk?

MF—PFEAH 1Inm, FEAITDHNER BEENREZELAZKY

1 point

193

Part C. Black hole Temperature and radiation 2iE 98 EfiR5

Cl

Find the black hole temperature T in terms of horizon radius R.

KERAEET, BUHRFEEZEREFR.

2 points

2493

HAWKING RADIATION E£iE5

C2

According to the Stefan-Boltzmann law, an object with a temperature T should radiate.
Calculate the radiation power P in terms of the horizon radius R.

2 points

2493

11



HETFEN-RRLZEER BRHERET YRS XHES . TEEFNIERP, A

%}bﬁﬁlﬁ I R 7:6:27.!?0

Note: the Stefan-Boltzmann constant o can be written in more fundamental quantities
2m kg

a50 = T5c2n3 ‘s

- FOS . [ 215k

EHE LB REEE R o TUAFREANYIREREL (0= 52

15¢2h3°

Primordial black holes are a conjected type of black holes, which has existed almost
from the “born” of the universe till now. Denote the mass of the primordial black hole
by Mp when it has just formed in the primordial universe. For the primordial black holes
that still exist now, estimate a lower bound for their M (ignore the accretion of the 4 points
primordial black holes). 4 4y
FRHERBEEIANAD, EFEREZY, RURELFEE—LREB. MBS E
BIATEE. B Mp ATEFHEY, EVMREBRNEANNRE. A7TILERVIRE
BEINAEMDMATE, KM VTR (REEEREYRBIIKIR).

C3

PART D. ROTATING BLACK HOLES jjg# iy 2 iF

Realistic black holes are typically rotating, due to the angular momentum conservation of in-falling matter.
With rotation, the first law of thermodynamics of a black hole is dE = TdS + QdJ, where () can be
understood as the angular velocity of the horizon, and J the angular momentum of the black hole. In the
following, we consider the = 0 parameter regime.

PSR R RB—REREN . XERAREMLRBONE—RETRHNE, NEANETIE.
NTERMORR, RBORNDEE-ERNIE =TdS +Qd], HP QuUHIERANTNAEE, |2
RIARAEE. TTEEEP, BAVERE Q= 0 SHX A,

Now, we let the black hole to interact with a clump of matter outside the black hole.
After non-adiabatic interaction, part of the matter falls into the black hole, such that
the change of energy and the change of angular momentum of the black hole satisfies
dE = AdJ, where A is a constant. Find the range for A for the black hole to lose energy 2 points

Dl

after the interaction. 245
WaEFZBRASRRASIMNANIEBEER. SUFEANBEER, FoYHRE

HERR. XPMIED, RREENANENTUHE JE =Ad], HFAZ—1E
. ATUERRESYRMAEERTRERR/), KAHNBESER.

In D1 we have found out the principles of extracting energy from black holes. In practice, we study an
explicit toy model of how matter extract energy from a toy “black hole” in Newtonian mechanics (i.e. no
special relativity or general relativity needs to be considered). This is a simplified version of the so-called
Penrose process.

DL, BMEMTMAERPREREEN—MEN ., IE, BIMNAR—ANIEER, k#HE—LI1ER
%Tﬁﬁﬂﬂ}%—/\qﬂﬁﬁﬁ%ﬁq:‘m ‘GARE" (BEER, AEEFEIENAEINRF XAEX B RY)
REEE. X ‘ISR B9— ELhRA,

12



Let’s model the rotating black hole as a rotating sticky ring with radius R, initially with mass M; uniformly
distributed on the ring, and angular velocity ;. Its center of mass is initially at rest. We neglect the
gravitational effects of this ring (i.e. the ring does not source a gravitational force in our approximation).

ERMA—HRAR, EEN, BHENTRENRE. XNGEREHN M, B3P0 WTIHLE),
AEEA Q. BMHENZ, RAFUOEFERN. RMNBEIASI NN (B, ERANALELL
T, XPRFIFARFESIN),

Now, consider a composite particle AB (there is a force to bind A and B, but the binding energy is
negligible), where part A and part B has mass M, and Mg, respectively. A and B are considered as point
mass.

&, ZER—NEESHT ABAMBZEMNIEABREE—k, BIRE ABNBETNAKE), H
A BB H B EB D AR B E M, 1 Mg, AFIB %B—ILXEEJU??, o

9%
Vin /
—_
B B
M, Mg

Step 1/ E—H Step2 /B Step3/ FE=%

l

Step 4 / M

Step 1: the composite particle AB moves toward the center of the black hole with an initial velocity v;,,.
B—F EENTUYERE v, AERNTIES.

Step 2: AB stick on the black hole surface, and rotate together with the black hole.

E-F  ABMERRKREL JFEBERFEN

Step 3: B got absorbed by the black hole. To simplify the calculation, assume here (in D2 and D3) that after
absorbing B, the black hole is still a uniform ring with radius R, and its new mass is M; + M.

£=2F  BHARRK., AT EMAUTE, iR (f& D2 # D3 &) B HKW/E, RBNDRA—TIYIE
WRR, FRMAR, MHMNREZRT M+ Mg,

Step 4: At the moment B got completely absorbed, the binding between B and A disappear, and then A
moves freely to the tangent direction of the black hole in the black hole reference frame.

B 4B EWRIKAIBIE, BMAZEMNREERT. T2 AERANSERT, ABRERRK
Y% TIm B E K,

Steps 2, 3, 4 happen fast enough, such that the amount of rotation of the ring during these steps is
negligible.

BT, =, IFREBEBIR, XESRPREREINAZT NBEART.

13



Find the condition that the ejected kinetic energy K,,,; for particle A is greater than the
initial incoming kinetic energy for the composite particle K;,, = %(MA + MB)viZn, in the
D2 |formofQ; > --or(); <-

BT A B SENREN Kowe, BEERTHIVIBNEEN Kin = %(MA + Mp)viy. K
Kout>Kin EI];J'\'[L-F FH-Q > - _KQ <- %ETO

4 points

443

Suppose a civilization uses a rotating black hole as a power plant, by repeatedly using the model and
process described in D2, and make use of the difference in incoming and outgoing kinetic energy.

Rix— X BT Miede RIFKIZIEEE . RIEBNITIER AN D2 PR g E, WENAH
SIS ERRE

The black hole is initially at rest with mass M and angular velocity (). Each time, the civilization throws
composite particle AB with the same initial velocity v;,, with respect to the civilization themselves. The
composite particle AB has mass My, Mz << M. Again, to simplify the calculation, just as in D2, we model the
black hole by a uniform ring with fixed radius R although its mass grows by absorbing B.

Miakzl, RREFHE, REAM, BHEHNQ XK XPXBIE—NPEENT AB BAERYIRE
K vin (*HXT? XNMXABCHSER) PEIRRAT. BRESHTHRE My Mp < M. ABUITE,
IEgn D2 —t¢, BANERBEUASIR. FREEARHMER. BTREBRT, EIRREHEIN.

This process is repeated as long as energy can be extracted from the black hole. When the process is
repeated, the civilization keeps at rest in the v;,, direction (the horizontal direction in the figure in D2), but
follows the motion of the black hole in the directions perpendicular to v;,.

BNEEXMERE, BEEAHENRRTRREENLE. SEEXMERENRE, XDXPE v, 77
) R¥FERLE (RD D2 BEIFH9KET ), BEEET vin 97710 ERFERIFZE.

At the moment when no net energy can be extracted from the black hole, the
civilization stops throwing matter in. What is the terminal angular velocity {1, of the
D3 | black hole wh\en the civiIizaFion stops throwing rpatter in?_h s \ 6 4>
HAFRAXNMEEMNREPRNEEN, XNMXRELEDERMARR, KX
PMXRAFREZRMHFYEE, KBRRRSHAERE Q.

6 points

~End of Part 2 -2 5¢ ~
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