Pan Pearl River Delta Physics Olympiad 2023
2023 SFRIR=MH KRB E R IL 5 EiE 5
Sponsored by Institute for Advanced Study, HKUST
PR E R FHT T b B

Simplified Chinese Part-2 (Total 2 Problems, 60 Points)
RS2 (G288, 604))

(1:30 pm — 5:00 pm, 29 January 2023)

All final answers should be written in the answer sheet.
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All detailed answers should be written in the answer book.
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There are 2 problems. Please answer each problem starting on a new page.
HH 28, 9% 18, JURHEFI—HE.

Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering the questions. No
working sheets for rough work will be distributed.
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If the answer book is not enough for your work, you can raise your hand. Extra answer books will be provided. Your
name and examination number should be written on all answer books.
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At the end of the competition, please put the question paper and answer sheet inside the answer book. If you have
extra answer books, they should also be put inside the first answer book.
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Problem 1: Vacuum bubbles (28 points)
B 1: ZZEE (28 47)

Is our vacuum stable? We don't know. It's possible that we do not live in the true vacuum. Rather, we live in a false vacuum
which can decay into true vacuum by emerging and expanding bubbles. To describe such a possibility, we will make use of a
space-time dependent "scalar field" ¢ (t, x, y, z), which takes a real value at every space-time point. (Similar to height on a map,
which takes a real value at every point on the x-y plane, while a scalar field takes a real value for any given t, x, y, z. Also, in a full
quantum theory, we have to distinguish operators and numbers, but here we will assume the scalar field only take real number
values.)
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The scalar field satisfies the following equation of motion: — ——— 972 922 + Fral 0, where V(¢) is the potential

2
density of the field, and we will call it potential for short in this problem. The energy density of the scalar field is % (‘Z—f) +
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We consider the following potential: the false vacuum has field value ¢ = ¢, where V(¢,) = 0, and the true vacuum has field
value ¢ = ¢_, where V(¢_) is slightly negative. In the left panel of the following figure, we plot the shape of the potential. The
right panel is an example of the false and true vacuum in position space.
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In this problem, we will use natural units and set the speed of light in vacuum ¢ = 1 (by redefining the time unit as the time that
light traveled over unit length). In this unit, when an object is at rest, its energy equals its mass by the famous formula E =

mc? =m.

ABH, BMBEAERBUFEXESHNALE c =1 (REXNENEAAXFERBMKENNE) . EEREAH
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A. DOMAIN WALL H5 &2

Before coming to the asymmetric potential which generates vacuum bubbles, let us consider a symmetric potential as follows:

ARNARENROBE AR CEMNE=EIAR, RMNEFEDT—IREEEE
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Let's find a static solution which is homogeneous along the y and z directions, known as a domain wall. The potential of the
domain wall V(¢) = V(@) is illustrated above, with two minima V;,(¢,) = 0. The domain wall can be used as the local
approximation of the bubble wall.

BB —FE y Tz TEYTH BE R, CERBEBRINNFBE V() =Vh(P), ERERIMR/MEV(¢1) =
0, BEEETTINEAERER /Tl

Al. SIMPLIFY THE EQUATION OF MOTION £ &&=z A&

Given the static and homogeneity (independency of y and z) conditions, write down the simplified 2 point
Al equation of motion for ¢. 12)(?5} s
RIERES, MURIYY (RMRBiTy Mz 7im) B4, BHUERENENTE.
A2. THE DOMAIN WALL PROFILE B58¥ #7817 BUE 9 == a1 T 1k
do .
- Exprezz) -, Interms of Vp (). 3 points
IR 2L v, (¢) Tk K. 34
A3. THE DOMAIN WALL TENSION BEEEHyEK 11 (2)
The tension of the domain wall (energy density of the wall for unit area in the y and z directions) is ¢ =
s qf’_* F(P)de. Find £(¢) in terms of V, (¢). 2 points
BRI (MY, z TESAER L, BROEBTE) 2o =" f($)dp. HEf($)H 29
Vb () LK.

Note: to avoid propagation of possible errors, in the later part of the questions, please still use the domain wall tension o where
applicable, instead of using the integral expression that you obtain.

T ABREBAENEREE AXERENES T, HSAEBEEKAN, BNERTS o, MARXERKEMNIRDF

B. BUBBLE WALL ;f1

E-.ﬁ'.
8

If we only look at a small part, a bubble wall can be approximated as a domain wall. But globally, the bubble can be approximated
to be spherical with radius R. Let's assume that R is large enough, such that the thickness of the bubble wall is much smaller than
R (thin wall approximation). Inside and outside the bubble, ¢ — ¢, exponentially quickly.
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At the moment when a bubble is nucleated, the bubble is static, and the bubble nucleation and motion create negligible amount
of radiation or other dissipations.

AEZEESENNZ, EEHLEN. e NI ETRNENSECFERT U2,




B1. THE ENERGY ON THE BUBBLE WALL jE@EE Y REE (1)

At the momentum of bubble nucleation, calculate the energy E},, carried by the bubble wall using R and
B1 | the bubble tension g.

AR ENNZ, FHRMEBEKS o HERBENERE Ey. 9

B2. FALSE AND TRUE VACUA BEZ=MEHEZ

1 point

For a spherical bubble to appear, there must be an energy density difference between V(¢..). Thus, to
write down a potential to model bubble nucleation, we consider the potential V(¢) = V,(¢p) +
(¢ — ¢,). In the thin wall approximation, we are only interested in leading order results in € (the

b=
B2 lowest order in Taylor expan5|on which contains €). Calculate € using o and R.

ATILRERZBAEBEI, V(d,) E’JEMEM\JT & Fﬁu AT HESEBNFELEZT 29
HRRE, RINFERBEV (D) =Vo(d) +—- EMT, FANRABNE e T
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B3. BUBBLE MOTION 88 fYi= )

2 points

B3 At the moment of bubble nucleation, calculate the acceleration a of the bubble wall in terms of ¢ and R. 2 points
FHEZEE~ERNBE, FIH o MR IHTERENINEE a. 245

B4. BEYOND NEWTONIAN MECHANICS #B#k 44 1 =%

When the speed of the bubble wall is close to the speed of light, Newtonian mechanics breaks down and
special relativity should be used instead. In special relativity, the kinetic energy of a moving object is

Ex = (y —1)m, wherey = ﬁ Calculate the time needed from the nucleation of the bubble to that

the speed of the bubble wall to reach 0.6.
LESORNRERANE, FRNFREER, RINEREREINE, EURNRE, |,

B | EREEE N B = (v — Dm, Hehy = . WHARGRNFEHBREREAH 06T | 44
B,
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Hint: you may need the mathematical relation —— = .
dx x2-1

A ST KL A dvyx?-1 _  x
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C. NUCLEATION RATE OF THE BUBBLE 388 A9 /= 4 &

What's the probability for a bubble to appear? It can be shown that the nucleation rate I of the bubble, i.e., the probability for a
bubble to appear in unit volume and during unit time, can be written as I' = Ae~SE/", where A and & are constants, and Spisa
"Euclidean action", which can be calculated with the following procedure:

AR ENBER S ? TRUER, BB~ EET, RISAREREAARR, —MNEa~EMNlE, TUHET =
Ae~SE/h tE HAAFAZER, S:2— "RREAE W BHUTHSERITE

(1) We "rotate" our physical time ¢t to "Euclidean time" t = it (where i2 = —1).

(1) BYIERS () cHERE BRI AT ) = it (Eehi? = —1) .

(2) The real-time and imaginary time field configurations are related by ¢(t = 0,x,y,2z) = ¢(t = 0,x,y, 2).
(2) SEERA (B A1 H A I 2A A R (¢ = 0,x,y,2) = (T = 0,x,y,2) EKRER.

(3) Given the above time boundary condition, find a 4-dimensional rotational symmetric solution of the Euclidean equation of

_¢ _¢’ %¢ L 0%¢ _av(¢) _
motion + +ay 352 pra
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(4) Insert the solution to the Euclidean action S; = [ dt d3x [ (df) + %(%) +

1(ﬂ32+16@f
2 \dx 2 \dy

2
Let us do this calculation in this part. Note that a 4-dimensional unit ball with radius r has "volume" %r‘* and surface "area"

%(ﬂ)z + %(‘;—"’)2 + V(¢)] to find T

dy

dt a

(4) B HREIBENRKERES; = IMd3[(ﬂ-+ +ﬂ%f+ywﬂ%*En

2m2r3.

ERAFER— A P AV, R, RN CER 5D REERY 2nr,
C1. THE EUCLIDEAN EQUATION OF MOTION B K3z 5 75 72

Since we are to look for a 4-dimentional rotational symmetric solution of the Euclidean equation of motion, it is convenient to

use p = /T2 + x% + y2 + z2 as the variable for equation solving. Assuming that ¢ = ¢(p) only depends on p (i.e., 4-
(9) _
m;(p _
AT FRBHARNMELNAER, EHp =2 +x2+y2 + 2 EHBRAEMNE zttiﬂﬂﬁ % = ¢(p) RIKH:

p (XHEMARPFRENAN) | —BORREDHRTASHR IS+ £(0) 22 - LD — o,

2
dimensional rotational symmetric), the general Euclidean equation of motion can be written as M + f( )ﬂ -

Find the expression of f(p).

K)o

Hint: if the formal calculation needs too much calculus, you can consider an example: by tuning the form
of V(¢), one can obtain a solution ¢ = p2. Then f(p) can be solved by this example (and this form f(p) 2 points

Cl will apply for all forms of V(¢), not limited to this special form of solution). 24
R MRHTEENHEFTERSHIRD, RITNUEE— ATﬁ'J? DELIAR V() B, Al
FE—E G =p* XB, f(p) TRUMEMIFERLER (ZFEA f(p) WERAXEE V(P) B

B, MREBETXANERE)

C2. THE EUCLIDEAN ACTION BX R E &

Write the Euclidean action S;; as an integral of p fromp = 0to p — oo, 2 points

C2 | 3t p 9FRSY (Mo = 0FRE p > ) WS HEREMRAE S, 24

C3. QUALITATIVE INSPECTION E M 318 (4')

Before trying to solve the Euclidean equation of motion, let us first see how it behaves. If you are not familiar with this Euclidean
equation of motion, you can consider the following analogy: consider ¢ as the position of a particle, and p as an effective time
variable. In this case, answer the following questions (choose one from the options):

AR TEZR, BRMNEBBNENMR. IREAABZRRENTTE, RIYUMAINTELLRIER | 1€ ¢ KibR
—MRTME, o RIEABBATEXMITHERNELTE. EXFELT, MENTER (BIUEER)

What's the nature of f(p) %? IXTHRIZ f(p) % BMER 7
(A) friction (i.e. decelerate the particle) fE 1 (BRI FRIE) .
C3-1 (B) anti-friction (i.e. accelerate the particle) # /1 (BliLRIFH0E) 1 f;’;\m
(C) friction for % > 0 and anti-friction otherwise 7£ % >01ERTEEA, ENE#ES
(D) friction for % < 0 and anti-friction otherwise 7£ % <0BRTERN, FNEHEA
What's the force that drives the motion of the "particle" ¢?
W= T ¢ BT 2WA 7 1 point
C3-2 1 43
(A)V (B)=V (C)dV/d$ (D)—dV/dp




Where is the "starting point" of ¢ at p = 0? (Here § is extremely small but finite)

c1s | EP =0, ¢l RIARE FEWE? (HF S B ERIMIBRIK) 1 f%i\m

(A)p_—108) (B)p-  (O¢p_+]0()| (D) ¢, —|0(5)] (E)¢.  (F) ¢, +]0(5)]

Where is the "end point" of ¢ at p = 0?
Ep-oo, ¢ "RENE EWE? 1 point
C3-4 14>

(A)p_—108)| (B)p. (Q¢p_+1]0()] (D) P, —10(8)] (B¢,  (F) ¢, +1]0(5)

C4. THE BUBBLE NUCLEATION RATE & ifl = 4 3K

Express S in terms of R and o. 4 points

G4 |\ mRFoBSH S, 44

Problem 2: Lorentz reciprocity (32 points)
[ 2: B ZEZHM (32 )

Lorentz reciprocity is a fundamental principle in electromagnetism with important application in antenna design theory. It states
that the receiving and transmitting capabilities of an antenna are identical. On the other hand, reciprocity can be broken by using
magnetic materials under an external magnetic field with strong magneto-optical effect. The study of Lorentz reciprocity can be
extended to nearly zero frequency at magnetostatics, shown in the figure below, with two current coils and an arbitrary object
fixed in locations. When one current coil works in transmitting mode, another one works in receiving mode. If we model the two
current coils as magnetic dipole moments m; and m, at locations r; and r,, generating magnetic flux densities B, (r) and B, (1)
in transmitting mode, respectively. Then, the reciprocity relationship can be expressed as

m, - B,(r;) =m, - B(r;)
EBREZOGUERBHMFNEARE, ARLTERTEFEENA. ERERENERNAFENIZEEN. 5—7
H, TG T, FREERUARN NI IMEAE S . EREZESAMR T Y REE#SE, WTEMT,
ARTERAN—MEEEEMENYER. S BRAARELSERTEN, Z— P ERAEEIENXTE. BRK
WA BIRIRAME r Fr, EOEBRT m, Fm,, DHELFEXT~E#BZE B,(r) M1 B,(1). B4, &
BXEITURTA

m; - B,(r;) =m, - B,(r,)




m, atr, m; atr;

By(r2) B,(ry)
o—T1 e - o—TJ 1
Transmitting Receiving Receiving Transmitting

The magnetic field B(r) generated by a magnetic dipole m; located at r; is given by,

HRE 1 SROBABRT m; B 09837 B(r) TS,

Ho <3(T —r)(r—r) m; m; >

B(r) =— -
(M= =T LISrE

In this problem, we will first establish the reciprocity relationship and will investigate how it can be broken by imposing a constant
velocity on the object.

AR, BMEELEIEZXR, FHRNETBINYEEINEESEERITHE.

A. ESTABLISHING MAGNETOSTATIC RECIPROCITY AND NON-RECIPROCITY B~ 5B S MMIEF S M

For magnetostatics, we have vector potential A, magnetic flux density B, magnetic field strength H and impressed current density
J. These fields satisfy the Ampere’s law

VXH=]
with material response

VxA=B=uH
where u(r) is the isotropic magnetic permeability profile for the material, i.e. the object in the figure.

NFE%E, BINELAER A WERE B, WH8RE HMIMNIERERE ], XEGHERIETE
VxH=]
K TFURRNFRIER A

VxA=B=uH
Hep ur) EMRINERRMRSEN R, IR P,

We want to establish the reciprocity relationship for magnetostatics when we have a magnetic dipole moment m, at location r;
in one case and a magnetic dipole m, at r, in another case. The two dipoles generate magnetic fields B,(r) and B,(r),
respectively. The two cases, labeled by i = 1,2, have the current density J; = V X M; and magnetization M; = m;6(r — r;) for
the two dipoles.




HE—MIER TrbF—MEBIRT m I = £ R3S B,(DTES—MIER Tr B —MIBIRT m, 3= £ B,(r).
NFH =12 R3IOHMERT, BNFEREBEE], =V MAIHEBEM, =m;6(r —r). N TEMNEEEIEHUS
BMEZHKFR.

Here, we also give some formulas for these differential operators:
EXE, BMNE#—EXTHIETNLR

VxA=2(0,4, - 0,4,) + 9(0,A, — 0,A,) + 2(0,4, — 9,4,)
V-A=0,A,+0,4,+0,4,
V-(AXB)=(VxA)-B—A-VxB

[V-AdV =[A-da

[VxAdV =—-[Axda

[B-VxAdV =[A-VXBdV+ [AxB-da

and Kronecker delta function §(r) is defined by

_ (oo ifr=0
8(r) = {O otherwise

which satisfies [ §(r)dV = 1 when we integrate a volume V enclosing the origin. a is defined as the closed area enclosing volume
V.

LR EEREN—METRV #1750, Kronecker delta B E 6 (r) E&EA:

oo ifr=0

6 = {0 Btk L5
TEBE [ @)V = 1. a &S haEER v aH K.

Al. PROVING THE RECIPROCITY RELATIONSHIP JEEHE X &

Al Prove the reciprocity relationship m, - B,(r;) = m, - B;(r,). Hint: you may consider V- (H; X 4,). 3 points
EHESREm - By(r) =m, - Bi(ry). &7 {RITEE V- (H X 4y). 393

If the material conducts electricity with an electrical conductivity o, we have to add an additional term to the current density J
due to the free current through

J—-J+oE

in the Ampeére’s law stated previously. Suppose now we move the conductor by a constant velocity v. There will be a Lorentz
force on the free charges proportional to E + v X B. It further updates the additional term in the current density through

J—->J+0(E+vXB),
which may upset the reciprocity relationship.
WRVRNESR o S8, HTELHNBHER, RMNDAAELF LFERDEREE S RIN—DHIN
J—J+oE.

BIEMERNINETEE v 851 SE. BHBETEETFES E+v x BREEFIFEREZ N, X#E—SEHEAREE PR
IBUAEBIA R 5K R AT HE

J-J+o(E+vXxB).




A2. BREAKING RECIPROCITY RELATIONSHIP TR B 5 < &

Express the possibly non-zerom, - B,(r,;) —m, - B,(r,) as a volume integral in terms of the vector
A2 potentials A; and A, and the conductor velocity v.

B geIEZH m, - B,(r)) —m, - B1(r2)7=L€Tj]$E:I}E9%§%A1 EFDAZ AR SHRE Bv BEFRFR D,

3 points

390

You can complete part B and C without part A.
RETATFERE A BB RITES T 586 B #B43H0 € #B43.

B. MAGNETIC DIPOLES ON A MOVING PERFECT CONDUCTOR i=z1IEB S 1& F R {B1R F

In this part, we first obtain the magnetic field of a single magnetic dipole on a moving conductor, which is a perfect conductor (i.e.
the electrical conductivity o = o) here, occupying z < 0 and is moving with a velocity v in the positive x-direction. This is defined
as the laboratory frame, as shown in the figure below. The magnetic dipole, situated at (x, y, z) = (0,0, z,) on top of the conductor,
has a magnetic moment m = m,X + m,Z with zero component in the y-direction.

EX—ZNF, BIEeiBRamnStELI8N BN TFI#%E, XEREESNK (IBESE o =o), i <0 FHEIE
x AR EMURE viss), XFEEXALRELIRR, WTEMRR. MNTSERE (x,y,2) = (0,0,2z,) LHEBRFSH
m=mxX+m,2 fEyARLEEDE

Zo

Conducting Ob]'ec'; 5

In the moving frame at a velocity v = vX with respect to the laboratory frame, the object is simply a perfect conductor at rest,
giving us a convenience to find the magnetic fields generated by the magnetic dipole. The coordinates in the moving frame, denoted
as (x',y',z',t"), is transformed from the coordinates in the laboratory frame (x, y, z, t) through the Lorentz transformation:

ARNTIRELIRRNEE v = v BNLGFRES, DEIZ—NEILERSE, ﬁﬁﬂ%ﬁ@%&ﬂ%ﬁ&??
SIS BEHRRRPRLER, RTH &Y, 2, t), AKEELIRR(x,y, 2 t) PROLRBTEECETRERMK

x'=y(x-vt), y =y  z=z ct' = y(ct —vx/c)
wherey = 1/4/1 — v?/c? and c is the speed of light.
Hey =1/y1-v*/c?, c @HR

The magnetic and electric fields (B “and E’ ) in the moving frame are related to the fields (B and E) in the laboratory frame by the
Lorentz transformation,

Ba b ir R P REAMEY (B AE) SIRFLRETHG (BME) HX, THERELE

B, Be\ [ O E. E,
B, |=|vB, +C—2 E, |, E, |=(VE, |—vy B
B, YB, —Ey E, YE,

We further simplify the problem by removing the conductor at the moment.




BMNAABIBERSERHE— SRR,

B1. MAGNETIC FIELD OF A MOVING MAGNETIC DIPOLE IN FREESPACE B = 8 P iz 1B R F 7 Z

What is the magnetic field B'(x',y', z', t") from the dipole for an observer moving at velocity v with respect
to the laboratory frame? In this part, we only consider a magnetic dipole m = m,.X pointing in the x-
direction and there is no conductor below the dipole yet. Please express your answer in the coordinates
B1 of the moving frame. N
B AR TSR = AR R UE Ev B EENER 7% B' (Y, 7, t). HEX—oH, 39
BAREEER x TTENEBRTm = m 2 FEBRF THEXESE. BERABHLIFRNLER
FIRRINER.

Next, we introduce the perfect conductor below the dipole. The perfect metal has a planar interface at z = 0 while the dipole is
placed at a distance z, above the metal. The metal is being moved at a velocity v in the positive x-direction.

BETR, BAOEINBRT TANERSE. BERSHEE =0 fF-NFEFE, BRI TEELT 2 4. £EELE
x Jia EDURE v #5) .

3 point

B2. MAGNETIC FIELD OF A MAGNETIC DIPOLE ON A MOVING CONDUCTOR () izz51 S E#BR THN#%E (1)

Please express the magnetic field of the magnetic dipole m = m, X on top of a moving perfect conductor
(i.e B(x,y,0")) in terms of the laboratory frame coordinate. Please also verify the boundary condition of
the magnetic field in the moving frame at which the conductor at rest. Hint: adopt the method of images
and assume both electric and magnetic fields inside a perfect conductor is zero at a nearly-zero frequency. | 4 points
B2 | AR s SRR R REBD T OEESE ERIBRTmM = m, 2 WRIH(ED B(x,y,0M). EER | 44
MES A B LARR PRI R K. By XARRZE. BREERETMENTEXSHE
BRI H AT

B3. MAGNETIC FIELD OF A MAGNETIC DIPOLE ON A MOVING CONDUCTOR (2) izz51 Sk F# B R FH#%E (2)

What is the magnetic field from the magnetic dipole on top of a moving perfect conductor (i.e
B(x,y,0%)) in the laboratory frame if the magnetic dipole above the moving conductor is changed to
B3 m = m,Z, pointing in the positive z direction? 343
WMREHNSELETNEBRTFEAIM =m,2, {8EIE 2756, BATERE LR E SRR PEIBRT
EHPHNIEESHE ER#HE B(x,y,0%)) ?
Now, we consider the two situations: one with magnetic dipole moment m, at r; = (0,0,z,) and another magnetic dipole
moment m, atr, = (4,0, z,). When one of them is turned on, another one is turned off.

WA, BNEERBEMER | —FE = (0,0,2) LMHBRIE M, H—FE 1, = (6,0,2,) LHMHEBRIEmM,, HHF
— NI, A=K

3 points

VA
my =m,Z my; =m,z
|
/ ’
Zg
)Il > x
Conducting Objecg
14

10




Now, we define the two problems to solve next. For the first problem, suppose the two magnetic dipoles moments m; and m,
point in the z-direction with same size m,, as shown in the above figure. Dipole moment m, imposes a magnetic field of z-
component B,(8) on r, = (x,,0,2,) and dipole m, imposes magnetic field B,(—&) on r; = (x4, 0, z,) according to the same
function B,(x — x;). We then define a reciprocity figure-of-merit
_ Bz((s) - Bz(_a)
Bz((g) + Bz(_(s).

When R = 0, reciprocity is satisfied. Reciprocity is broken when R deviates from value zero.

WE, BMNEXETREBRAOBANER, N TE-NEE, REEDEERTm Fm,E4ERE 2 5@, K/)m, R,
W EEMR. BRT m, RIFRE B, (x —x) ¥ 2 D8 B,(6) WBIAMINE 1, = (x2,0,20) £, BT m, ¥ B,(-9)
Bﬁhu%u r1 = (xllOl ZO) _to AL J:?i?.ﬂ]/?EX_FL%IME

_ Bz((s) - Bz(_a)
B Bz((g) + Bz(_(s).

LR =0/, WEEHM. HREETEN, BEHMEITH.

For the second problem, suppose we change the pointing direction for m; to the positive x-direction with magnitude remaining
the same. The magnitude and direction of m, are not changed. In this case, the reciprocity merit is defined as R =

(312(6) - BZx(_(S))/(Blz((S) + BZX(_(S))-

NTFEZANERE, REBANE m IR ERHNIE x TEfANMRIFAE, m,IEMANAE, EXMERLT, BHI
BHEEXAR= (312(5) — By (=8))/(B12(8) + Box(=8)).

B4. RECIPROCITY MERIT FOR DIPOLES ON A PERFECT CONDUCTOR B S HMER FHESINE

Find the reciprocity merit R for the two defined problems about magnetic dipoles on the moving perfect
conductor. 3 points

B4 | R F R E B O S MR8 Sk L BT E S TER. 34

C. MAGNETIC DIPOLES ON A MOVING CONDUCTOR WITH FINITE CONDUCTIVITY EFERESENHEHSHE L

AR IB IR T

In this part, we move to a more realistic situation that the conductor is a metal. It has a large but finite conductivity o (in unit of
Q~1m™1), deviating from the perfect conductor condition. Current density in the conductor is given by J = ¢E. We also assume
that the current on the conductor surface is confined by a skin depth d of small thickness so that the electric and magnetic fields
cannot penetrate beyond the skin depth from the conductor surface. Then, the surface current density can be written as (od)E.
We further take the approximation that d is just a constant. We only consider the two dipoles pointing in the positive z-direction
with same size m,, in this part.

ARX—EH, BNEE—AFAXNERL NEESERERAEARMNESEK o (BN 07'm™) | mEEESHE
Fi. SEHHNBEREEH] =oE . BMNEREERRAESERAERRNERRE d WRE), BHMBUSIE
NS EEFEETERRE. RURARRBETUER ((DE. BTNHE—FRE d A—1EH. EIBIHNR
ZIEMMERTEIEEIE 2 7518, K/ m AR,

Again, we need to solve the magnetic field from only one dipole at (0,0, z,) first. In fact, the surface current profile generated on
the surface of conductor cannot be easily solved without adopting a numerical solver. Instead, we can approach the problem by
extending the method of image as an approximation. In this case, we would like to have a point-like multipolar source at the image

position (0,0, —z,) in order to give as closely as possible the same reflected field generated from the surface current. For the

(PN (PN

current case of m = m,2, we put an image magnetic dipole with given form of magnetic moment m, X + m, "2 and electric
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moment p}(, ))7 at the same location (0,0, —z,). The mirrored magnetic dipole is now relaxed to have both magnetic and electric

components while neglecting the higher order multipoles. The size of these dipole moments are yet to be determined.

B RNBRERR (00.7) RRE—MBRTOUS. KL SHEREFENREVRIHTRAUERMHL
TAEBHRMY ., X2, RISREBETBEEREBRIANEE, EXMERT, RIIFEBESZE (0,0, -2) &
R ERE, R TR R R R A SR R 55 T LB m = m,2 IER, BAVESEEIER
FREF(00,—2) it EREHENFLL HEA mO2+m 2 BER Y. BREERTFIARNEEUE
HE, FNZBENSERT. XEBRBHANEHHEE.

C1. GENERALIZED METHOD OF IMAGES |~ X B & 7%

Find the magnetic field B'(x',y’, 0%) and electric field E'(x', ¥, 0%) on the conductor surface in the

@ @ ™ - .
moving frame. Express your answer in m,, m, °, m, - and p,,*. You can use either the moving frame or
laboratory frame coordinates. Do not need to solve the mirrored dipole moments yet. 5 points
*&ﬂ$ﬁ%#%$ﬁmwﬁy@azW)ﬁ%%EQJIWL ERAm,. m? . m” fp{” Rik 59
ROER. TUERBNLIRGE LR FLIFRIAFHER.
AN AHBERBRRIBRIE.

C2. FINDING THE MIRRORED DIPOLE MOMENTS i+ E &5 {E k4

Cl

Find m(r) (r) and p ) in response to a given m,. The mirror dipole gives the same reflected field
generated by the surface current on the conductor. As approximation, only apply the boundary condition
(in the moving frame) on the surface current along the y-direction, which is the dominant current than the
one along the x-direction. It may be useful to express the answers in term of the dimensionless parameter | 5 points
C2 = povyod > 1. 59
magmERREm . m) Mp)) . FGRERTALT SSHEREARASENERNRSS. %
AIE, EBNREG (ERLRREP) NAT Ry TEAREER, ZBRLEx TTEE
AEESHA. TINEERLENS K = .uov)/tfd » 1 RIEKEER,

C3. RECIPROCITY MERIT FOR DIPOLES ON A CONDUCTOR OF FINITE CONDUCTIVITY
ERBESESHELBRFNEZNE
Find the reciprocity merit R for the two identical dipoles m, displaced by § (with r; = (0,0,2,), r, =

C3 (6,0, zy))in the x-direction.
HHTE x J118 EAifES  (ry = (0,0,2)), 1, = (6,0,2,))) IR MERBIRF m, EHINNER,

3 point
343

~~ END of Paper 2 %5 2 5¢ ~~
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