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All final answers should be written in the answer sheet.
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All detailed answers should be written in the answer book.
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There are 2 problems. Please answer each problem starting on a new page.
HH 28, FE 18, JCRHFT—HLK.

Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering the
questions. No working sheets for rough work will be distributed.
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If the answer book is not enough for your work, you can raise your hand. Extra answer books will be
provided. Your name and examination number should be written on all answer books.
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At the end of the competition, please put the question paper and answer sheet inside the answer book. If
you have extra answer books, they should also be put inside the first answer book.
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Problem 1: Precision measurement of the gravitational constant G (27 points)

B 1. BEAEH GHEHUE Q75

The precision measurement of the gravitational constant G is important because it is a fundamental constant.
Besides, it can play a role in verifying (or disproving) some recent proposed versions of string theory or the
existence of the fifth fundamental force.
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Part A. Estimation of the Gravitational Field Change During the Experiment (15 points)
Xt SEi o 51 1R RIETE (154D

Let R and M be the radius and the mass of the Earth, respectively, express the gravitational
field g in terms of R, M, and G, while ignoring the spinning of the Earth. 1 point
Al
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In this problem we present a simplified version of the latest method, which can lower the relative error of G
down to 10°. As shown in Fig. 1(a), laser interferometer 1 measures the spacing between the two pendulum
bobs with respect to the reference spacing between the suspension points of the pendulum, which is measured
by laser interferometer 2. When the four source masses are moved from the outer position (shown in Fig. 1(a))
to the inner position (shown in Fig. 1(b)), the pendulum bob separation changes. Not pictured is the vacuum
chamber that encloses the pendulums but not the source masses.
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Figure 1: The setup of apparatus for measuring the gravitational constant precisely, with the source masses
placed at (a) outer positions, (b) inner positions. 7/ 77 75 HFGHME LI R E, WAIET (a) S0
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Figures 2 and 3 show the top and side views of the apparatus. The outer and inner positions of the source
masses, and the pendulum bobs (at the ends of interferometer 1) are located symmetrically with respect to the
center of the vacuum system. The length scales a1, a2, b, d, h and R are shown in the figures.
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Figure 2: Top view of the apparatus. X757
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Figure 3: The side view of the apparatus. 1X #HI# A].

It is very complicated to calculate the gravitational force of the 4 cylindrical source masses acting on pendulum
bob A. Here we approximate each cylinder with uniform density, mass M, radius R and height / to be a thin
wire with uniform density, mass M and height % passing through the axis of the cylinder.
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Figure 4: The X-component of the gravitational field at point P due to a cylindrical source mass is now
approximated by that due to a thin wire. 111 P w157/ 775919 X 7@ R], FFIEHITENT IRV 904 -

You are provided the integral formula:
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Derive an expression of the X-component of the gravitational field g, at point P due to .
o . 3 points
A2 the thin wire. Express your answer in terms of G, M, h, zo, and r.
N
HEF A BRI S I(E P R X0 geo F G, M, hy 2o P r ZORIRIISE 2R 37
Calculate the gravitational field g, at point P when the point is very near the thin wire. 1 point
A3
L PARREGEAZR,, THESIME P 5 X 0 E g 17
Applying Gauss’ law, verify the result in part A3. Write your steps in the answer sheet. 1 point
A4
S e R, WAk A3 RIS, AR EE T, 15
You are provided the following parameters:
PRATEAE I BL N 24
G =6.67 x 10" Nkgm? M=119.1 kg a1 =0.568 m
a2=0.166 m b=0.262m d=034m
h=0312m zo=0.002 m R=0.083m




Using the given parameters, and the thin wire approximation for the 4 cylindrical source
masses, calculate the horizontal component of the gravitational field due to the 4 source
masses at the position of pendulum bob A, when the source masses are located at the inner
A5 | position.

3 points
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Similar to part A5, calculate the horizontal component of the total gravitational field at the
position of pendulum bob A, when the source masses are located at the outer position. 3 points
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Calculate the change Ag. of the horizontal component of the gravitational field at the
position of pendulum bob A, when the source masses are moved from the outer position to 1 point
A7 | the inner position.
14
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In this experiment, care has to be taken to monitor the uncertainties of measurements. Since the calculation is
complicated, we will simply focus on the expression derived in Part A3. Consider the case that all mass
measurements have an uncertainty of 0.6 parts in 10°, and all dimension measurements have an uncertainty of
1.4 parts in 10°.
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Remark: The uncertainty of a physical quantity f{xi, x2, ...) is given by the standard deviation of fdivided by
2
£, that is, ’afz /f?, where x1, x2, ... are independent measurements and 0'f2 is calculated from afz = (a—f) o2 +

axl
"’_f)z 2 4 ...
(axz o2 + -
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Calculate the uncertainty of g, in Part A3. 2 points
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Part B. Measurement of the Gravitational Field Change During the Experiment (15 points)
WESLHHIE 135 (1540

In Part A we estimated the gravitational field change when the source masses are moved from the outer to the
inner position, assuming a certain value of the gravitational constant G. In this part we investigate how the
gravitational field change can be measured experimentally, such that the gravitational constant G can be
calculated. We let:

Ax = the horizontal displacement of the pendulum bob A when the source masses are moved from the outer to
the inner position,

o = the angular frequency of the natural oscillations of the pendulum bob,

m = mass of the pendulum bob.

£ Part A ", BAMRBE S IEE G, ANE 7RISR 2P 51 713722 . A E o,
FA PR FE UL S8 I & 51 A3 s, DL R 51 0 H 2 G BATTE X =&

Ax = EJRNSMUAS B A MRS, 158 A £E7KFJ5 R B A% &
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m = PR .

Derive the expression of the change Ag, in the horizontal component of the gravitational
field at the position of pendulum bob A, when the source masses are moved from the

outer position to the inner position. Express the result in terms of the 3 variables above. I'point
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The pendulum bobs are hung from the supporting bar at a distance / = 0.738 m vertically below the bar. The
gravitational acceleration is g = 9.8 ms™.

PTG T R, SEEMMEEEEN1=0.738m. 5] J7I#EEZ & g=9.8 ms?Z,

Using your result in part A7, calculate the change in the separation of the pendulum bobs. | 1 point
B2
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There are corrections to the answer in B2 because besides the pendulum motion, there are other contributions
to @ such as the flexing of the wires. The frequencies were found to be (0.589 8171 + 0.000 0023) Hz for one
bob and (0.589 7069 £ 0.000 0013) Hz for the other, where the number following the plus-minus sign is the
standard derivation of the quantity.
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Calculate the mean and the uncertainty of the average value of the pendulum frequency. | 2 points
B3
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If the error of time measurement is 10~ s, determine the number of periods to be measured
such that the uncertainty of the measured period is 1077. 1 point
B4
B BN T B O B0 R 22 107280, 9 Tk EIRZEN 107 KM EARSE, KT 17>
T R .

The horizontal displacement of the pendulum bobs can be measured with high precision using the laser
interferometer (commonly known as Fabry-Pérot interferometer). The cavity of the interferometer is formed
by two highly reflective mirrors separated at a distance d = 0.34 m so that the laser team traveling between
them forms a standing wave. The laser wavelength is 633 nm. When the spectrum is closely examined, one
finds that it consists of a sequence of peaks as shown in Fig. 5.
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Figure 5: A sketch of the close-up of the spectrum of the interferometer. -4 HF itk 40 E 25 #)oR = E o

Calculate the frequency separation of the neighboring peaks in the spectrum. Then 7 points
BS calculate the wavelength separation of the neighboring peaks in the spectrum. p

. s o . R s NN . 245
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The width of the fringes in Fig. 5 is about 100 kHz.
K5, REUNTE 2009 100kHZ .



Assuming that the major mechanism of power loss of the standing wave is the
transmission through the mirrors, estimate the fraction of power loss from the

WA SR | nm, SRR PR A N O

B6 interferometer per transmission. 2 points
> AN > P\ =N Hp =2 e ) vax
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Suppose the length of the interferometer changes by 1 nm. Calculate the corresponding .
. . 2 points
B7 change in the cavity frequency.
29

When the source masses are moved from the outer to the inner position, the beat frequency of the cavity

frequencies of the two interferometers changes by 125 MHz.

2R EIRMSMUEL BN, DI TR IR AR 1 125 MHz.

B8

Calculate the change in the separation of the pendulum bobs. (Remark: This result will
be different from that in B2 due to the approximations made in Part A.)
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Problem 2: Physics in Various Dimensions (33 points) A [E4EE K3 (33 )

“What had she experienced? She had seen how a cruel attacker could lower the dimensions of space by one

and destroy a solar system. What are dimensions?” -- Cixin LIU, Death’s End (Translation: Ken LIU)
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In this problem, we will explore 4-dimensional space, attack from 4-dimensional to 3-dimensional spaces,
and the motion of celestial bodies in two dimensions. (Note: In this problem, whenever we mention the

number of dimensions, we mean spatial dimensions and did not count in the time dimension. For example,

when we mention 3-dimensional space, we mean the spacetime with 3 space dimensions and 1 time
dimension). The setup of the problem is as follows:
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Let the mass of the star be M, the mass of the planet be m << M, So in the star-planet problems, the star
can be considered at rest. The change of star position due to planet motion can be neglected.

In n-dimensional space, Newtonian gravity can still be derived from Gauss flux law: For any (n-1)-
dimensional closed surface enclosing the point particle M, the gravitational acceleration flux through the
surface is —A,,_;GM, where A, _; is the area of a (n — 1)-dimensional unit sphere (understood as
generalized area, for example, for n = 2, A; = 2m is length, for n = 3,4, = 4m is area, and for n = 4,
Az = 2m? is volume). The meaning of flux is: for a small area element, the flux is the dot product of the
gravitational acceleration vector and the area vector. For the case when the gravitational acceleration is
normal to the surface, flux is the magnitude of gravitational acceleration times this area. For example, the
figure below illustrates how to derive Newtonian gravity from Gauss flux law for the case of 3 spatial
dimensions.

Newtonian gravity from
Gauss flux law in 3 dimensions:

(flux through spherical surface)
= (F/m) X 4nr? = —A,GM

= F=—-GMm/r?

(Note: the Gauss flux law does not apply for general relativity.)

Newton’s three laws of motion still holds. Momentum conservation and angular momentum conservation
laws still holds. The relativity of motion still holds.

We approximate the stars and planets as particles, with negligible radius.

WIHERENM, ITREREm KM, SHETEBSHEREZ) R @, [EE UM L, 1742

B XHE AL E AR ] DL .
10



o fEn iz, G| el e gl E R E T ok, RIS a8 TS M AR e — 1 4E

PG T, 2 P T A 51 I I AR T A, GM, Hi Ay O (n — 1) 4R AL ERTH
RITAR (BT SCRITEAR, BIInfE n = 2 150U T Ay = 2m WKE, n=3 10T 4, = 4n NIH

B n =450 T A; = 2n? 9RO o BERERZ: X—AhIBuc, EERS g ERE

RIRA AT TC. X 5| Jyhnid B 3 B AR TS 00, RN 51 i /) oK/ 3 AT AL T T

1
/\ o

g, SR X = gEA R, AT RS Bl e T 1 AR E] e
=g=iEt AR hiER
ERESFIS hER

(FEBRAM S| HMEEEE)
= (F/m) X 4nr? = —4,GM

= F = —-GMm/r?
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Part A. High-Dimensional World (13 points) B ZER) 15 (13 43)

In the whole part A, we consider Newtonian gravity in n-dimensional (n > 4) space. Considering that the
gravitational acceleration vector is parallel to the position vector, the orbit of the planet is within the 2-

dimensional plane determined by the position and velocity vectors of the planet.

EREA Part A, BAIHEEn (n = 4) L=RETRFEE 0. BF50nEE S EREfL, T2
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Applying the Gauss flux law to a (n — 1)-dimensional sphere, one can derive the
Newtonian law of gravity in n space dimensions. Due to attraction from the star, the
gravity force exerted on the planetis F = —GMmr® (the direction of the force points
to the star); the gravitational potential energy is V(r) = GMm P /B, where 7 is the
distance between the star and the planet. Express «, [ in terms of n.

Bl s E e AN T (n— 1) 488k, 7T LAES n gE=S A ARG J e
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2 point
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A2

The Kepler’s second law in n dimensions is: L = mr*¢ is a constant (where ¢ is the

angle between the planet-star plane and the x-axis of the motion plane, ¢ = de/dt).
Find A.

n JERIT G N L= mrtg NHEEL (o NTE-HEELSILE) Vi
() x B2 8K, @ = de/dt) o R A

1 point
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A3

Calculate the speed of the planet along the radius direction 7 = dr/dt. Express your
result using n,r,G,M, m,E,L, where E is the energy of the planet (including kinetic
energy and gravitational potential energy).

RITEWMEFHEE 7 =dr/dt, Hnr,6,M,mE, L&y, L ENTENRE
(HLFEBIRER 5] IR o

3 points

30

A4

Give the conditions for the planet to form a circular orbit (give algebraic equations using
n,r,G,M,m,E, L, no need to solve these equations).

AT EIRRNIEIZ S T A % (GHRT nr, G, M,mE, L FIAECTT FEH R
w, ANETTRE o

2 points
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For n = 4, when the values of r, G, M, m, E, L are such that a circular orbit is
possible, and r is varied while other parameters are fixed, can the planet

(1) form elliptical orbits?

(2) move from finite r to r — c0?

(3) move from finite r tor — 0?

M =4, FEr,GMmE L WHEEAHTRA TR RSN, FEite
ST r BRI, 7R R A

(1) JE ARG

(@) AR 38315 7 - oo

(3) WAL 7 EZ) 5] r - 0

1.5
points

1.5 4y
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For n > 4, when the values of n,r, G, M, m, E, L are such that circular orbit is possible,
and r is varied while other parameters are fixed, can the planet

(1) form elliptical orbits?

(2) move from finite r to r — c0?

(3) move from finite r to r — 0?

For the possible cases in the above questions, please state the possible range of r given
n,r,G,M,m,E, L are fixed. (If the limit of the range is one of the roots of an algebraic

equation, please specify which root without the need to solve the equation explicitly.) 3.5 points

A6 " \ P LTI e T e N .
Un>4, F#Hnr GMmE, LB EMEEITEGTREREPUER, [EHeLe 3.5 4%
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(2) MATIRI 7335 7 — oo

(3) MATHRI 7 3535 1 - 0
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Part B. Dimensional attacks in Newtonian gravity (5 points) 2R 5] 77 T K4EEFT 5 (5 43)

Suppose aliens living in 4 spatial dimensions perform dimensional attack on enemies also living in 4 spatial
dimensions. The way of dimensional reduction is to reduce one space dimension into a small circle with
circumference length C. In this way, in fact, there are still 4 spatial dimensions. But for small C values,
seeing from far away, one cannot see the dimension of the small circle. As a result, seeing from far away, the
enemies appear to be living in 3 spatial dimensions. We call such spatial regions under dimensional attack
having “effectively” three spatial dimensions.

(BB DY 42 ) v 1) 2 ) 1) [RD A 2R A DU 4 RO SEREE BEST o o FRAERITTIRAE, R — AR 4
NIRRT C /NI . IXRE, s liem 4. (H2 C IRV, MamibE sk, B ARXAE
MARERRIYESE . X0, MIZALFE R, U7 R AT =425 18] — A AT IR I T8 A2 45 T v i
AR “ATR7 YRR =4k

As illustrated in the below figure, suppose the vertical dimension is the dimension under dimensional attack.
The horizontal plane denotes the remaining three-dimensional space. Before the dimensional attack, the four-
dimensional space can be considered as, in a three-dimensional space, on every point there is one straight line
indicating the fourth dimension. After the dimensional attack, on every point there is a small circle with
circumference C indicating the fourth dimension. The circle indicates that the top and bottom endpoints of an
interval are glued.
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Assume that during the dimensional attack (assume the duration is short enough), apart from the sudden
change of the law of gravity, a system under dimensional attack does not have additional forces exerting on
it. The momentum in the 4-dimensional point of view does not change. The law of gravity can be understood
in two ways: the effectively three-dimensional gravity and the more fundamental four-dimensional gravity.
The values of a gravitational force computed using these two methods (using Gauss flux law) agree with each
other.

BBELE T drd A (BB R RF e B 2 98 J) B 1 5 e e AR AR SN, 3T
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B1

Consider a point particle at rest, which exerts Newtonian gravity upon other objects (whose
distance is much greater than C). Find the relation between the four-dimensional Newtonian
gravitational constant G, and the effective three-dimensional Newtonian gravitational constant
G5 (in terms of G, = (function of G3 and other parameters)).

IR — AL A e (FREEE KT ) ARG . RIV4EFE5] 7]
WGy M =YEA RG] S Gy 2R R Gy = (G RILVESHMRED &£
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3 points
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B2

Suppose the relativistic mass-energy relation E2 = |p|?c? + m?c* applies both for three and
four dimensions. Here ¢ denotes the speed of light. Suppose before the dimensional attack, a
point particle with mass m has momentum p = (p;, P2, P3, P4)- After dimensional attack, the
4™ dimension (corresponding to the subscript 4 above) becomes a small circle. Calculate the
three-dimensional effective mass of the point particle after the dimensional attack.

BAHXS IR RER R E? = |p|®c? + mPc* fE =4 MU ZEH R, b c i, w4
FEFT I 221, —NEA m KR RIZIEN p = (01, 02, 3, pa), AT dE, SIS
ARYERE G IR fibr 4) 8RNI, SR AELEREST o Jm i) =4822 8] A 2K

JH & .

1 point
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B3

Suppose a planet (with mass m) is moving along circular orbit in 4 space dimensions, with
the star (with mass M) at the center. The distance between the planet and the star is 7. Now
dimensional attack this system along a direction perpendicular to the plane of planet motion.
Calculate the energy of the planet after the dimensional attack (gravitational potential energy
plus kinetic energy in the three-dimensional effective point of view).

BRI m BAT BAEDY 4 m h LA BUESE R RO M NfE s, SEEEENr.
PUxT R RIS EAT RIS s Py BT YR T . SRYEFEIT R, =4E AT A2
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1 point
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Part C. The Two-Dimensional Newtonian World (4 points) —4E4F it 5 (4 43)

We further reduce spatial dimensions and consider Newtonian gravity in two dimensions (n = 2).

PV — D B e R, 508 4k (n = 2) ZERIFRAFES] 7.

C1

Provide formulas for the Newtonian gravitational force law and the corresponding
gravitational potential energy in two dimensional.

B R R VAR S DA PN AW G A ) VAW

1 point
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C2

Provide relations for planets to move along circular orbits around the star (give algebraic
equations in terms of r,G, M, m, E, L. You don’t need to solve the equation).

RATRGEEBRYPEIZSMITA KM (KT r,6,M,m,E, L FAREU; R 4LR]
w, ANETTRE o

1 point
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When the values of r, G, M, m, E, L are such that circular orbit is possible, and r is varied
while other parameters are fixed, can the planet

(1) move in abounded range r; <1 <1, where 0 <7y <1, < ®©

(2) move from finite r to r — c0?

(3) move from finite r tor — 0?

Just answer possible or impossible for the above three questions (may need to discuss
different cases for different parameter choices).

1, G,M,m,E, L NBUE[ T EG e A SER, 8 e e S50 r BUA R 253
HE, ITEZEBE R

() BAEARM r <r <r, XAHNEZE3, HFo<nrn<n <o
Q) NERI rizsh3 r - oo

Q) NERK riEgsh® r - 0

XFRAE=T0], 2l mERE B A RERN A) CF Al (g ZARYE S HHUE 2 H LT ie)
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Part D. The Two-Dimensional Einstein World (11 points) — % F#riHiH 7 (11 4)

Interestingly, in the two-dimensional case, the ‘“gravitational” law in Einstein’s general relativity is even
simpler than Newtonian gravity. In general relativity, there is no gravitational force at all between massive
point particles (the space outside the particles is not curved either). Instead, the only gravitational effect of a
point mass is that the space around it becomes conical (like a cone).

GRS, TSRO, ZRMIET SCEXR TR “ 51 707 ML AR e E R . T X
FARE A, g2 I8 (5 Z (AR A A A R 5] 77 Osts AN 2 e B A 2 D o 1Mo & SR 1Y
RN, Ao A L ) 22 B O [ HE T

In the conical two-dimensional world, free particles and light will move along straight lines. Here straight
lines are understood in the following way: if we cut the cone along a ray starting from the top vertex (not
intersecting with the motion trajectory), and lay it on the plane as a circular sector, the motion trajectory is a
straight line on the sector. For example, the lines AB and CD in the figure below.

FERIHEIZ I et 5, B B MO R Eis3 . X B BBy, KRR s — 2%

M R S PUE AR S LRBIIT, JRET i M ORI R, 18shBlliE R E2H
2. Pl NEPELZ AB, CD.

When we cut the cone into a sector, there is a deficit angle (the angle that a sector lacks compared to a disk),
denoted by ¢ as illustrated in the figure below. This deficit angle is proportional to the mass M of the point
particle. Here we assume 6 < .

ERHEST T RS, S RS AN ELRTsR AL CREIRT &) FONBIHERISRIE M, 5 i iR
M SEL . AR S <m.
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cut along
dashed line

r‘ »
T

Point P is moving along a circle surrounding point M (M is the center of the sector in the
figure below). The angle between the observer-M line and the MP line (viewed anti-
clockwise) is 8. Depending on different values of 8, sometimes the observer finds a single
image of P and sometimes finds double images of P. For example, in the figure below, the
observer can observe double images along the dashed lines. Find the condition for the
observer to observe double images, and the angle between these two images (the angle
between the two dashed lines in the figure).

2 points
D1 —— . S TN
&P SR A MR A 3 (M Oy EI R T ) 243
W 2 IR — /B LA P A IS . L .
ML MP L (RN ES) A P . it
0. BE o BUEAR, WHANES PRBAR, H
B BIXG . o B, W T CLVE B RS E
B PHIRER . KU RER 2 P BRI %M, BAK
BARAI I (RO TR P RE R TR R AR D
Att = 0, a point particle with mass M (with corresponding deficit angle §) moves towards
observers P and Q. The direction of motion is perpendicular to the PQ interval, and the speed
is v (much smaller than the speed of light). The mass of P and Q are negligible. At the initial
time t = 0, P and Q are at rest, distances MP = MQ, PQ = 2d, the distance between M and the
PQ interval is s. Calculate the time t,, when P and Q
2 points
t.
D2 mee Vv i T P
Bl M Rk &) s A iET M @ 2d | 2%

ZEEFINNE Py Q 23), B3 HERT PQ & o)
2, HENv CENTHE) . EFIHENZ =0
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Consider the same setup as Problem D2. The observer P (starting from early enough time)

continuously emits sound wave towards all directions. The source of sound has vibration
2

2

c§—v°cosé 13 . .

—~——— = — (use this relation to
c§—v 12

frequency f. The speed of sound is ¢, satisfying

eliminate ¢ from the result), and the wavelength of sound is much smaller than s and d. The
media to propagate sound moves together with M (i.e. at rest with respect to M).

D3 Shortly before P and Q meet, the sound frequency that Q hears is f, . Calculate f;,. 4 points
E5%5 D2 A E T, Wil P AR % RIFa) RRekm s 7 R H A 45
N - . s i 1y CE—0? . -

W PEURIARSNSIEN £, PR oo 2 058 - 1 (g 2 Bl
Fcg) » AEBERENT s Md. R HERE T ERFER A Mgz (RIS M AR
Frik)
£ P AT Q RIS AHIEFT, QWrBIHAs S fro K fo
Consider the same setup as Problem D3, starting from which time (i.e. find the corresponding )
. 3 points

D4 t) on, Q starts to hear this frequency f,.?

35
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Note: In reality, although we do not note a danger under dimensional attack to two dimensions, it is still

meaningful to study the physics in two dimensions. For example, in our three-dimensional universe, there

probably exist one-dimensional objects called “cosmic strings”. The cosmic strings in three dimensions are
similar to point particles in two dimensions. Both of them bring a deficit angle to space. The three questions in

Part D corresponds to the three important observable effects of cosmic strings. Searching for cosmic strings

using these three observable effects is an active interdisciplinary research direction between high energy

physics and astronomy.
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