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All final answers should be written in the answer sheet.
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All detailed answers should be written in the answer book.
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There are 2 problems. Please answer each problem starting on a new page.
A28, FE 18, JCRHFHF—HTLK.

Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering the questions. No working
sheets for rough work will be distributed.

R ACS AR RGE b, R EAE R R B, AR KRR

If the answer book is not enough for your work, you can raise your hand. Extra answer books will be provided. Your name

and examination number should be written on all answer books.
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At the end of the competition, please put the question paper and answer sheet inside the answer book. If you have extra

answer books, they should also be put inside the first answer book.
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Problem 1: Spatiotemporal varying electric permittivity (30 points)

[FJRE 1: B 2225 /e 5 (30 47)

The discovery of gravitational waves initiated an era of gravitational wave astronomy. In addition to the ground-based
gravitational wave observatories, gravitational wave observatories based on laser interference between satellites are also
planned, for example, the Taiji and Tiangin programs in China and LISA in Europe. Here, we study a simplified version similar

to the Tiangin program.
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As illustrated in this figure, we consider three satellites surrounding the earth following circular orbits. They form an
equilateral triangle. They form an interferometry in the nearly vacuum environment near the earth. From the change of
interference patterns, the change of space distance is measured to detect gravitational waves. Here we will study the error
sources for Tiangin to reach its desired measurement precision.
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In this problem, we will use the physical constants and satellite parameters including:
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Newton’s gravitational constant 4l 55 [ /147 G = 6.67 X 107 11m3/(kg s2)

Planck’s constant 3 EATEE % h = 6.626 X 10™3*m?kg/s

Vacuum Permeability ELZ5H4 52 uy = 1.257 X 1076 kg m s™2 A~2

The mass of the earth #ERFHE M = 5.97 x 10%* kg

The radius of the earth #7ER % r = 6.37 x 10°m

The distance from a satellite to the center of the earth L2 78 S50 AYFEES R = 108 m
The laser wavelength used by the satellite T2 2 G- 1 = 1064 nm

The size of the optical system of the satellite T EYFZERE D =0.1m



Part A: Gravitational fluctuations on the orbit of the satellite T 23 Y5 [ 13050

Al Here we only consider gravity from the earth and consider the earth as a homogeneous ideal ball. Give
the periodicity T of a satellite rotating around the earth. Please use second as the unit and give three
significant figures.
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2 Points

24

A2 Since the shape and density of the earth is inhomogeneous, the satellite will feel an additional
acceleration da in addition to the uniform circular motion. To simplify the calculation, let us model the
inhomogeneity of the earth as follows: Consider an ideal ball with mass M — 2m. Two additional point
masses (each has mass m) are put to diametrically opposite points on the equator of the earth. Assume
that the satellite orbit and the earth are in the same plane, with angle 8 between them. Give the
precise formula to calculate da.
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A3 Calculate all the possible periodicities for §a. Please use second as the unit and give three significant
figures. 2 Points
A3. 3K Sa [ [RIZLATA FTRE FEHARVEE - 154 ML ST Y AR EE - RIS = A 50 24}
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Ad In the R > r limit, give the leading order expression (the lowest nonzero order in the Taylor expansion 2 Points
of r/R) for da.
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A5 Estimate the typical value of §a (an error within two orders of magnitude will be considered as correct). 3 Points
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A6 In satellite experiments, we are interested in the gravitational waves with a particular periodicity (such
as periods between 1-1000 seconds). Thus, if the periodicity of the gravitational fluctuation is too long,
it will not interfere the gravitational wave measurement. Assume the satellite is co-rotating in the same
direction with the spinning direction of the earth. In the Taylor expansion of §a, calculate the
component with period closest to 1000s. Denote this component as §aqqo- Estimate the value of 3 Points
804000 / 6a for 8 = /3. (an error within two orders of magnitude will be considered as correct) 39
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Part B: Free electrons from the solar wind X JHX\F#Y E EHEEF

Consider the laser signal between the satellites. Although the space between satellites is close to the vacuum, but it is not
the absolute vacuum. In particular, solar wind will introduce free electrons. Let the number density of the free electrons be
N,, the electric charge of an electron be e > the electron mass be m,. And we ignore other media apart from these
electrons.
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B1 Assume that the electrons move freely in the electric field produced by the laser. Calculate the
acceleration of the electron dv, /dt as a function of the electric field E produced by the laser. 1 Points
AR B R B H HEnh » KA dv, /dt S0 ERYH E Z [RIEYR 19
//%g\\ °
B2 Calculate the time dependence of the electric current, dJ/dt, from the free electrons. 2 Points
SKE H T RAY H R BAR RIS (L d) /dt - 29}
B3 Calculate the phase speed of the laser v, in the environment of the free electrons (since v, is very
close to the speed of light, the higher order difference between v, and the speed of light can be
ignored).
2 .
Hint: from the Maxwell equations, one can derive that ZTS — ¢2V2E + c? % =0. 3 goél;ts
B3. SKHUEAE H IS s v, (T v, BBRELE - v, SEEERIRYE M I LA
R )
_ 82E d
HET ¢ SR TR AL S — ?V2E + % g 2 = 0.
B4 Let N, = 10 cm™3. Calculate the phase error of the laser between two satellites. In other words, if
there were no free electrons, the laser waveform arrived at a satellite is cos 8. Now with free electrons,
the same wave form at the same moment changes into cos(6 + 68). Calculate the value of §6. 3 Points
W N =10 cm™3 > KN TUE Z[A] > B E 5 [REAVEOEAEAN R - B A BlHET 349>

Part C: Shot noise B g =

Any precision measurements are limited by the uncertainty principle of quantum mechanics. Assume that every photon’s

arrival time at the detector can be considered as independent stochastic processes. Also, in actual experiments, phase error

of the laser is more important. But here for simplicity, here we only estimate photon number errors.
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Cc1 During a certain period of time, the average photon number in the laser is N. In this case, the error in
the photon number measurement in the laseris AN = N, Find a. 1 Points
FLESIRIA - ot HEE N AT o BEEB0E AT EAIRES AN = N* - 3K 19
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c2 If we request that in one second, the relative error of photon number measurement is ATN <3x107°.
Calculate the minimal power of laser P, that the satellite should receive. (3 points) 3 Points
e . Ly — s e ‘g o ap AN _ . L I
EEORAE— IR - SETEUINERIMENHRZEN 7 < 3 X 107° > KT 2 BREIRTRD LR (ED) 39
ES Bec®

C3 Assume the laser arrived at a satellite is emitted from the other satellite from the three-satellite system.
Estimate: in an ideal case, what is the minimal emission power of laser P,,;; from the other satellite i

. . . . 3 Points

(can be considered to be correct if the order-of-magnitude is correct). 3 43




Problem 2: Metric-modified geodesic and heat conduction (30 points)

[B]/ 2: B EEIERNIANRAES

Solving physics, such as wave propagation, geodesics, and thermal conduction, on a curved surface in 3D requires a thorough
understanding of metrics and differential geometry. However, there can be significant simplifications for systems with spatial
symmetry or by adopting coordinate transformation. In this question, we will go through two problems for physics on a curved
surface. The first one is light propagating on a curved surface. Figure 1 (a) shows a circular cone with height 5 mm and a base
diameter of 2p, = 10 mm, joining to a flat surface. The flat surface has a circular hole of the same diameter so that as a whole,
there is only one single surface with the cone part indicating the 'curved space.' The entire surface, including the flat surface and
the cone, have a very thin surface so that light can be effectively confined on such a surface. We have assumed the cone is joint
smoothly to the flat surface. The second question, being illustrated later, is about steady-state thermal conduction on a
hemispherical surface.
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Figure 1(a) depicts a curved surface created by connecting a circular cone to a flat surface with a hole of the same size as the

cone's base. In Figure 1(b), we present a top view of this surface. Light confined to such a surface originates on the flat surface at
the bottom, undergoes bending due to the cone, and exits in a different direction.
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A. GEODESIC ON A ROTATIONAL SYMMETRIC CURVED SURFACE & %5 ¥ /R i ] _ Ay il 3t 2%
In mechanics, we are aware that when a system exhibits rotational symmetry, we can simplify the derivation of dynamics by
applying the conservation of angular momentum. For instance, we can employ the conservation of angular momentum to derive

Kepler's laws. In the current scenario, we consider a normalized angular momentum, denoted as L, which is defined as:
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dp ,do
L=2- px——p s

Here, p represents the projected position vector on the two-dimensional x-y plane, given by p = xX + yy = Xpcos ¢ +

yp sin ¢ , with the projected cone center as the origin. p is the magnitude of vector p and s is the arc length along the path of
Iight on the surface.

TEXE - p AR TIE 4 xy FH EAESEAIERE > Hp = x2 +y9 = Xpcos ¢ + Ppsin pZ5HH » Hp ik i
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Given that the infinitesimal arc length on the cone satisfies ds? = dx? + dy? + dz? and z = z(p) is the
height at that point, prove the geodesic on the cone satisfies
BRI EAES NIKREds” = dx? +dy? +dz? » Hoiiz = 2(0)RIRATEINE » TSI

Ay | HE LA g 3 points

p9) = (et~ 12)
Instead of using arc length s to parametrize the geodesic, we have used ¢ for parametrization.
XE - JAIEHORSE LML - AR s -
A2 For a light starting on the flat surface with a perpendicular distance of p,/2 to the origin, what will be
minimal p the light can go. 2 points
T MPETERE S S E RN po/2 I ARDEL: > CREEIAN R/ N p &%/ ?
A3 What is the deflection angle y by comparing the entering and exit rays on the flat surface?
Hint: you may need to use fx\/% =tan"'vVx2—-1+¢

LB AP FAE AR » Ry - 7 points
HUR  RATAEBER [ o= =tan Va2~ 1+ ¢

B. HEAT CONDUCTION ON A SPHERICAL SURFACE () BRIEf_EHHVES: (1)
A usual trick is to search for a coordinate transform from the curved surface (represented by the Cartesian coordinates (x, y, z))
to a 2-dimensional coordinates system X — Y plane so that the physics on the (X, Y) just looks like a flat plane. For a unit

spherical surface, such a map is the stereographic projection
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x y .
*,¥) = (=g, 757) = (peos g, psing)
Suppose now we consider heat conduction problem on such a spherical surface, i.e. a very thin shell of spherical surface. The
steady-state heat conduction has the temperature profile satisfying the Laplace equation
AR FEAE XA — BRI _EHVRVE SR - BI—NIRESEIVERIE R R - fSVE S BEA W A /712 (Laplace
equation) R E53 A ©

V2T(0,¢) =0

while temperature profile is independent of radial distance r in spherical coordinate (r, 8, ¢»). The spherical surface is at radius
r=1.
BB M SEREER r TR - XPEREHFENr=1-



Prove T satisfies Laplace equation on the (X,Y) coordinate:

EBA T £ (X, Y) 2841 B35 E Laplace J57%:
1 1,

Hint: For convenience, we are given the Laplacian in spherical and cylindrical coordinates as
N T IT{EREN, - FRAT TR AL T BERALARAIAE AL AR N HY Laplacian J7E25 -
In spherical coordinate (fEEK2LHR ) (7, 6, ¢):

Vif == 0.(r%0,.f) + =———=0,(sin 0 0, f +—62f
f r2 r( T) r2sin @ o(si of) r2sin2g ¢
cylindrical coordinate (fEAE2EFR ) (o, ¢, 2):
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v f ——ap(p6p1)+—20¢1 +621

Bl 4 points

Now, the above figure gives the thin shell in the shape of lamp shade, which is in a hemi-spherical surface with a circular opening
at the top. The whole shape still has a rotational symmetry about the vertical z-axis. The bottom of the lamp shade is kept at

temperature T}, (at 6 = g for spherical polar coordinate) and the top is kept at temperature T, (at 6 = 6,).
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Solve the temperature profile, as a function of 8, with such rotational symmetry.
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C. HEAT CONDUCTION ON A SPHERICAL SURFACE (I1) BRTE]_LRYFRARE(N)

side view




Now, we consider the top opening is tilted about the y-axis in breaking rotational symmetry. Suppose the top opening is still
a circle on the spherical surface passing through (x,y,z) = (0,0,1) and (sin«, 0, cos ) as diameter and its normal is on
the x-z plane.
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Determine where the top opening is mapped on (X, Y) plane through the stereographic projection map.
AR F SR - B E THTES A CAE (X, Y) P AT & -

Hint: the answer is still a circle in X and Y coordinates.
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Solve the temperature profile T (X, Y) when the bottom opening is kept at temperature T}, and the top is

kept at temperature T;. You can leave your answer in terms of X and Y coordinates.

Hint: In the stereographic projected domain X-Y plane, Laplace equation is satisfied and you can further

use general method of image, like the one used in solving electrostatic problem by putting two point

2 charges on the X-axis with undetermined charges.
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