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All final answers should be written in the answer sheet.
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All detailed answers should be written in the answer book.

A RS R E S .

There are 2 problems. Please answer each problem starting on a new page.
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Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering
the questions. No working sheets for rough work will be distributed.
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If the answer book is not enough for your work, you can raise your hand. Extra answer books
will be provided. Your name and examination number should be written on all answer books.
Filh EEEAS A IS T, g EaEHES ML MES .

At the end of the competition, please put the guestion paper and answer sheet inside the
answer book. If you have extra answer books, they should also be put inside the first answer
book.
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Problem 1: Bose Einstein Condensation (22 points) 3% &,-& R #rHEE (22 43)

Planck’s constant ¥ B 5 # % 7 = 6.626 x 107* Js
Boltzmann constant JJ7/X2% S % # ks = 1.381 x 107 JK!

In nature, particles are classified into two different kinds: bosons and fermions. Bosons (e.g.
photons) are particles that like to be together in the same state. In contrast, fermions (e.g.
electrons, protons and neutrons) are unlikely to go into an already occupied state according to the
Pauli exclusion principle. Statistical mechanics tells us that when a system of bosons reaches a
critical density in a trap it undergoes a transition that a large number of bosons will have a
tendency to occupy the same lowest-energy state. This phenomenon is called Bose-Einstein
condensation. The following figure shows how bosons and fermions occupy energy states when
the temperature approaches 0 K.
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Recent development of trapping and cooling ultracold atoms (e.g. Sodium, Rubidium and
Lithium atoms) paved the way for the observation of Bose-Einstein condensation of atomic gases
in ultracold temperature (Nobel prize in physics 2001), which had been theoretically predicted by
Bose and Einstein in 1924. Several different cooling techniques have been employed to achieve
ultracold temperature around 10-100 nK (note 1 nK = 107°K). For example, the hot Rubidium
atoms prepared at 400 K are cooled down to ~1mK through the Laser cooling techniques (Nobel
prize in physics in 1997). Such cold atoms prepared by laser cooling technique are typically
loaded into the external trap (produced by either magnetic or optical fields) for further cooling as
shown below.
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A. Maxwell- Boltzmann distribution and the thermal de Broglie wavelength of the atoms
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Consider a dilute gas of atoms. The inter-particle interactions are very weak. In this case, the gas
can be described by the ideal gas model in which the particles move freely inside a stationary
trap without interacting with one another except for very brief elastic collisions to reach thermal
equilibrium.
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In this atomic gas system, the probability distribution of the particle speed v is given by
Maxwell-Boltzmann distribution,
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where m is the mass of the atom, kj is the Boltzmann constant, and T is the temperature of the
gas in the unit of Kelvin [K].
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AL Derive the most probable velocity vy, of a particle at temperature T. 2 points
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Based on the most probable velocity v, obtained in Al, write down the

characteristic de Broglie wavelength 1,5 of the particle in an atomic gas at 2 BoINts
A2 | temperature T. P
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Since particles in a gas of atoms have different speed following Maxwell-Boltzmann
distribution, it is useful to consider the thermal de Broglie wavelength (A;) defined as A, =
1

Aag X m 2 . Here we derive the Bose-Einstein temperature T . for a gas of N non-interacting

(bosonic) atoms of mass m in a three-dimensional box with volume V. We will consider the
simple physical picture that Bose-Einstein condensation occurs when the characteristic inter-
particle distance between bosonic atoms becomes comparable to the thermal de Broglie
wavelength Ar. (Planck’s constant h = 6.626 x 1034 Js, Boltzmann constant kg = 1.381 x 102
JK™)
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What is the expected 7, of the N = 10° atoms of mass m = 1.445 x

10 25 kg trapped in the trap with a volume of = 10>um3? (1 pm =10
A3 | m’)

TEHTN V= 105umP I, 3% N = 10° A m = 1.445 X 39
1072° kegffyJ5+ K T, BIAHAE. (1 pm’ =10""m’)
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B. Evaporative cooling in an external trap ZE/ BRI R S A

The temperatures reached by laser cooling are extremely low (< 1 mK), but they are not cold
enough to realize Bose-Einstein condensation. To date, Bose-Einstein condensation of alkali
atoms has been achieved by using evaporative cooling after atoms are loaded into the external
trap. During evaporative cooling, when atoms escaping from a trap have a kinetic energy higher
than the average energy of atoms in the trap, the remaining atoms become cooled.
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In the following problems in part B, we will estimate the effect of evaporative cooling. For
atoms trapped in a box of fixed volume and having no heat exchange with the surroundings, we
assume that an average energy of trapped atoms is € and a small number of atoms |AN| are
evaporated within a short time At with an average energy of (1 + 8)e where § > 0. During the
process, the small change in the number of atoms AN < 0 leads to the change 4e < 0 in the

average energy of the remaining atoms. We also assume that |—| « 1 and | | « 1.
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[Remark: In the derived relation, you may ignore the term EA—N since E « 1 and |ATN| < 1]
Ae AN
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B1 Derive the relation between Ae and AN with S, € and N. 3 points
R B eFIN, HES Al AN Z [l % - 37




Now we consider cold atoms at the initial temperature of T; = 200uK in a trap. Assume that we
remove 1% of atoms (i.e. = 0.01) during each time period At and = 2.
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Then estimate the final temperature T of atoms after the evaporative cooling .

. ) 3 points
B2 | over the total time period of 350At. 3 4%
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C. Bose-Einstein temperature T in a harmonic potential
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In a real experiment with ultracold atomic gases, a gas of bosonic atoms is trapped in a three-
dimensional harmonic trap generated by the laser beam or the magnetic field. Here we consider a
three-dimensional trap characterized by the harmonic potential:
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Consider the fact that ultracold atoms are oscillating around the bottom of the
trap with the characteristic trapping frequency w,/2x along the i-direction.

C1 | Derive the characteristic volume confining the atoms in terms of 7'and wy, ,. 3 4
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Derive the Bose-Einstein condensation temperature 7, of the atoms trapped

co in a harmonic trap considered in Part C1 in terms of ®; and N. 2 points
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What is the Bose-Einstein condensation temperature T, of the N = 10* atoms
of mass m = 1.445 x 1072°kg in the harmonic trap with trapping

c3 frequencies wy/2z = w,/2x = w, /27 = 100 Hz? 1 point
WP A N = 10T, B E TR Am = 1.445 x 14y

1072 kg, VEEMIFEN wul2r = wyl2r = 027 = 100 Hz. SR3E 5-52 5
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Note that the evaporative cooling is efficient enough to achieve the Bose-Einstein condensation.
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D. Adiabatic cooling by slowly expanding the trap #&Ei Z 8k TRVSH

Cooling atomic gases to lower temperature has been motivated by the quest to observe new
forms of matter such as superfluid. However the evaporative cooling we discussed in part B is
not always preferable since a number of atoms leave the trap during the process. In this part we
consider a different cooling technique (so-called adiabatic cooling) by slowly expanding the trap
without losing atoms.
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Calculate the fraction of atoms remaining in the trap after the evaporative 1 point
D1 | cooling described in part B2. fﬁ
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Consider N atoms in an external harmonic trap with trapping frequencies of wy = @y = w; = 2xf,

at the temperature 77 = 105 nK = 1.05 x 10”7 K. From now on, we assume that the whole atomic
gas can be regarded as a monoatomic ideal gas. At this stage, the atomic gas has the pressure P,

and the volume V| as described in the figure below.
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Now consider the adiabatic decompression process of N
atoms trapped in a harmonic trap. For this we adiabatically  p1
change the trapping frequencies of the harmonic potential
trap from wy; = wy 1 = Wy = 27fy t0 Wy, = 27f, and
Wyy = Wyo = %following the adiabatic process in the
P-V diagram. Note that there is no heat exchange between

P2
the atomic gas and the environment (actually vacuum) and
no atoms leave the trap during the process. Work done
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Calculate the final temperature of the atomic gas after adiabatic .
. 2 points
D2 | decompression of the trap. 2 4
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Problem 2: Swimming Microorganisms (33 points) ##¥k M4 (33 43

Although objects in water tend to sink in a gravitational field, microorganisms such as
paramecium can control their swimming directions not necessarily subject to gravitational field.
Recently, physicists proposed that their swimming patterns are related to their asymmetric shape.
When they swim in a viscous fluid, they experience asymmetric resistance forces that may cause
them to rotate.
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A. Resistive Forces and Torques in a Viscous Fluid kEME54k Ay HLFE J1F0 /148

For a rod having a translational motion in a viscous fluid, there are two kinds of resistive forces.
In this question, we will refer to the resistive force acting in the normal direction of the rod as the

drag, and the resistive force along the direction of the rod as the friction, as shown in Fig. 1(a).
The drag per unit length is approximated as v/, and the friction per unit length as % where
v, and v; are the velocity components normal and parallel to the axis of the rod respectively, and
A 1S a constant proportional to the viscosity of the fluid.
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Fig. 1: (a) Directions of the resistive forces acting on a rod moving in a viscous fluid with velocity v indicated as the
white arrow. The drag is directed along —v,, and the friction along —v;. (b) The resistive forces acting on an element
of the rod rotating about point P in the same plane at radial distance d, and tangential distance d; from its center.
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As shown in Fig. 1(b), consider a reference point P whose radial and tangential distances from
the center of the rod are d, and d; respectively. If the rod has a fixed position and orientation with
respect to P, and P has a translational motion, then the resistive forces acting on the rod can be
calculated using Fig. 1(a). However, if the rod also rotates in the same plane about P at an



angular velocity w, there will be extra forces and torques acting on the rod due to drag and
friction.
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Al Derive the friction F due to the rotational motion. 1 point
BT T e sh 5| R K R T Fo 143
AD Derive the drag D due to the rotational motion. 1 point
S T e Esh gl D. 145
A3 Derive the torque # about the axis of rotation due to the friction. 1 point
BT B ) S e 0 i i g 141
Al Derive the torque zy about the axis of rotation due to the drag. 2 points
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B. A Passive Microswimmer with No Rotation &3l /1 XA eIk Y

An asymmetric microswimmer is L-shaped with the dimensions shown in Fig. 2(a). The mass of
the microswimmer is m and the density is uniform. The lengths of the long and short arms are 4b
and 2b respectively. The width and thickness of its two arms are negligible.
AARWPRHEIATRE RN LIPAIR, RSTE 2 (a) fos. FEkfEyImEES m,
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Fig. 2: (a) Dimensions of the microswimmer. (b) The weight and the velocity of a passive microswimmer. (c) An
active microswimmer.
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A passive microswimmer does not have any self-propulsion. The center of mass G of the
microswimmer is at a distance h and k from the midlines of the long and short arms respectively.
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Write the expressions of h and k. 2 points
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The L-shaped microswimmer is tilted by an angle ¢ as shown in Fig. 2(b) and is sinking with
velocity v in the direction inclined at an angle & with the vertical in the presence of gravitational
acceleration g. The microswimmer does not rotate. Assume that the upthrust of the fluid is
negligible compared with the weight of the microswimmer.
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Write the equation consisting of the components of all forces along the y axis .
. 2 points
B2 | (the direction of the long arm). N
W5 Ny B (KE85mE) BFTE 2 AR GE -
Write the equation consisting of the components of all forces along the x axis .
o 2 points
B3 | (direction of the short arm). 2 4y
WE Mt x B CEERIITR) FTE 2 JTHERT TR -
Write the equation consisting of the moments of all forces about the center of .
B4 | mass. 2 points
v . . 2
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Calculate the tilt angle ¢ of the microswimmer at the steady state. Give your 1 poi
) point
B5 | answer in degrees. 14
WK EMERS THBR Mg . B RUZHERE.
Calculate the motion direction & of the microswimmer at the steady state.
B6 | Give your answer in degrees. 1 point
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C. An Active Microswimmer with Rotation B3/ X &Rk ik EY)

To model an active microswimmer, physicists implemented a laser-induced chemical reaction at
a point on the shorter arm of the object so that it provides a self-propulsion force F normal to the
short arm. The dynamical properties of the microswimmer are rather sensitive to the point of
application of F. For convenience we consider the case that this point is located at a distance



lp = gb from the corner (see Fig. 2(c)). The force can be adjusted by tuning the laser intensity
incident on the microswimmer. Note that it is possible that the microswimmer can rotate so that
forces and torques due to rotation have to be included. The velocity v, direction & and the tilt
angle ¢ becomes time dependent, and you will need to include the angular velocity ¢ as one of
the variables.
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Write the equation consisting of the components of all forces along the y axis .
. 2 points

C1 | (the direction of the long arm). 2 4y
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Write the equation consisting of the components of all forces along the x axis 2 boints
C2 | (the direction of the short arm). 2 N
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Write the equation consisting of the moments of all forces about the center of .
C3 | mass. 4 points
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The above three equations can be solved for the three variables vcos(¢ —0), vsin(¢—0) and 4 .
Bat =R a] LIt veos(g —0) « vsin( ¢ —0) Fl ¢ =/ PATE KRR

Eliminate vcos(¢ — @) and vsin( ¢ — @) from the above equations to obtain an

ca equation involving ¢and ¢ only. 2 points
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Derive the tilt angle ¢ when the microswimmer reaches the steady state of
C5 | constant tilt.
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2 points

Consider a microswimmer initially at the steady state with F = 0. Att = 0 the
laser is switched on so that F becomes nonzero. Calculate ¢(t) for F << mg. 2 points
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13 FAONAEE. £ F<<mg GO T, i),

10



When F gradually increases from 0, the direction of linear motion gradually changes. When F
exceeds a critical value, the tilt angle is no longer constant and the microswimmer takes a wheel-
like trajectory.
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Write the maximum value of F for linear motion. 1 point
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To verify that the microswimmer can move in a wide range of directions,
calculate the force(s) required for linear motion in the horizontal direction 6=

/2. Give your answer in multiples of mg to 3 significant figures. 3 points
C8 | S 7 Wik B R s 2 R B Y T VRSB, RS BE Y | 34
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(THE END 52)
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