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All final answers should be written in the answer sheet.
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All detailed answers should be written in the answer book.
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There are 2 problems. Please answer each problem starting on a new page.

HH 28, 8% 18, JCRHFI—HTLK.

Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering
the questions. No working sheets for rough work will be distributed.
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If the answer book is not enough for your work, you can raise your hand. Extra answer books
will be provided. Your name and examination number should be written on all answer books.
A EEEAG A LIS T EH, S EHHES T A NES .

At the end of the competition, please put the question paper and answer sheet inside the

answer book. If you have extra answer books, they should also be put inside the first answer
book.
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Gravitational waves (GW) are the “ripples of space” predicted by Einstein in 1916. GW are
transverse waves travelling at the speed of light. They are sourced by the change of mass
distribution in space. In 2015, GW were detected directly by the Laser Interferometer
Gravitational-Wave Observatory (LIGO). The detection is not only a verification of Einstein’s
prediction after 100 years, but also provides a completely new probe of our universe and opens a
new era of GW astronomy.

Problem 1: Gravitational Waves (26 points) 5| /73 (26 4)

1916 £, ZHMHIHHE 7ERE R ——5 . SI18GERB, DOt ERE, H
VTS 2 (W] P TS R AT A . 2015 4E, BOGT S IR E (LI1G0) K ILF! 13
G173 B RIAEGAE 7 Z N FERE, R R i e T B 511
RBITIE T 5] T3B R AR HI AR

In this problem, we will work in Newtonian mechanics and Newtonian gravity (instead of
general relativity), and ignore the expansion of the universe, unless stated otherwise.

FEAE N, Br AR IARU I 2 Ab S, BATRAE A AF WU s AR G g Gy AS 2 ) SORX
W), HZMT A K.

You may find the following quantities useful here

A5 AR AT e 2 DT HfE -

Gravitational constant 215|775 44 Gy = 6.67x10 "'m3kg 152
Speed of light 1% c =3.00x10%m/s
Mass of the sun & FH i & Mg = 1.99x103kg
Mass of the earth HiEK i &= Mg = 5.97x10%**kg
Radius of the earth HiERF-4% g = 6.37X10°m

Part A. Indirect Evidence of GW (10 points) 5| /73 I EEEHE (9 &)

Before the direct discovery of GW, indirect evidence of GW has been found in a binary pulsar
system in the 1970s. The binary consists of two pulsars rotating around each other in circular
orbit with radius R. Let us assume each pulsar has mass M and radius r.

FLAE 20 thed 70 44K, ROCERCOEEXKTE RGeh KL T 51 1A R EAEE . W
kb B A2 g, PRk 22N R WIRSUIE F HEMASEE . SElkFENRERN M,
TN,
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Al Calculate the period of the binary system Tp. 2 points
RKBUE RGN Ty o 245
2 2
W~ _ S Thusv = |22 (1),
R 4R 4R

2mR R 5
TB —7—47TR GN_M (1 )

A2 Calculate the frequency of emitted gravitational wave fgyy . 1 point
KRB RGER 5 JTB IR fow o 145

GW are sourced by mass distribution. When the two pulsars interchange their position (i.e. after
half a period), the mass distribution returns to the same state. Thus, the period of GW is T /2
and the frequency is f;y = 2/Tg. (1/Tg for 0.5’; factor of 2 for 0.5)

The binary system emits GW with power P = 2 XGEMPRY, where c is the
5¢5

speed of light. Calculate the values of o, 8, y. 2 points

MR ARG 51 TR P = %xGﬁMﬁR% Hep o &g, k| 247

a, By HIE.

A3

Dimensional analysis.
[P]=m?kgs™, [c™°]=m~°s®, [Gy] = m’kg™'s7?, [M] = kg, [R] =m.

Thus,
2= -5+3a+y
l=—a+p
—3=5-2a (1)
Thus,
a=4, =5, y=-5(1)
Ad After time T, the two pulsars collide due to GW emission. Calculate T. 3 points
B 51 J0Ba S, £ T WielJa, PIRUbKeT EakdE . SR Te. 34
The kinetic energy of the binary is E} = ZX%MVZ = %. (0.5”)
2
The potential energy of the binary is E,, = — G’\Z’ r .(0.5%)

2
The total energy of the binary is E = E + E, = — G';’ j:l .

(0.5%)
2
aE _ GNIV; dr _ —P = —LSG,‘GMBRV =
dt 4R? dt 5¢c

— 52? GyMPR™>.(0.5”) (Minus sign in the last two terms because emission of GW means energy

Thus, the change of energy over time is



loss of the binary. We give result with both symbols «, 3, v, and their explicit values obtained in
A3, to avoid double penalty. If the student is wrong in A3, he/she may still get full marks in A4.)
Integrate the above equation from R to r (corresponding time duration T), we get

5 5
Tz — 8(_5;_1) Gie*M?*F(RTYt —r¥=1) = 53%6133M‘3(R4 —r%) . (0.5 for the integration
result, and 0.5 for the correct upper/lower limits, i.e. R* — r* instead of R* only or r* — R%)

Apart from GW emission, in general relativity, there is also a correction to
the gravitational potential energy AV, « —1/R? (note the negative sign) for
the pulsar system. For the same values of M, R, will this correction AV
A5 | increase or decrease Tp (no quantitative analysis required)? 1 point
E SRS, OGERRT, UR RGNS AR EEE — M UMBIE | 1Y
Wi: AVgp & —1/R? (EEAT). TR M AR, AVgg 2X3EINIE
D XUR RGN T ? CEMEDHTEITT, AFEEREE. )

Decrease. (17)
For fixed M, R, more negative potential = need larger velocity to provide centrifugal force —
smaller period.

Part B. Direct Detection of GW (7 points) 5| I KRB (7 5)

In 2016, GW were detected directly from distant merging black holes by the LIGO experiment.
2016 4F, LIGO S<u6 4175 3% 1t JI -5 S AF v BB 1 51 0

Assume that we know the GW source is in the minus y direction, as shown in
the below figure.

AR FATRGE 51 BRI 7 Ry TR, an R B s

GW source

1 point

B1 14

Now we measure the GW signal by measuring the change of distance of two
free particles. Which of the following orientation of the particles can detect
the biggest signal? Choose one from A-D below.

A. Along the x-axis;

B. Along the y-axis;

C. Along 45 degree in the x-y plane;

D. Along -45 degree in the x-y plane

FRA T3 P A R 22 TR B AR SRR 5 0. R A
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SRR RBCE R, WA S EOR? A A-D HIEFE 1.
AT x

B. ¥y i

C. ¥ x-y “FIH 45 FEA T )5

D. #¥ x-y “FIRIH-45 FE A7 A

A (Transverse wave — oscillation of spatial length is along x and z directions.) (1°)

The LIGO experiment has two GW detectors L1 and H1. L1 and HI are
separated by 3x103km. The GW signal first arrived at L1, and arrived at H1
after 0.007s. Calculate the angle between the GW source and the L1-H1 line.
Show the possible direction of the GW source in 3-dimensional space. (Draw
the direction on the figure in the answer sheet.)

LIGO SZIGA WA R ZS L1 F1 H1. L1 A1 H1 AHEE 3%103km. 3| J1U1(E
SEGENE L1, MUEEE H1. BERTEZDN 0.007s. KEIITBIRS | 2 points
B2 11K sELkiYesn, FEEH B R S Y A TR A (A | 2 4y

i N, E AR

Z
T ~3x10°%km Y
>

X/ L1 Hl

The distance between GW source and earth is much greater than the distance of detectors. Thus,
the GW can be considered as plane waves, and a wave front can be approximated as planar.

0.007sxc = 2.1x103km (0.5”)

The angle between the L1-H1 line and the GW source is
thus

arccos 2.1/3 = 0.795 rad = 45.6° (any of these is fine)
(0.5%)

Since the situation is spherically symmetric, the
possible sources form a cone. Note that there 1s
essentially no difference whether to draw the cone
starting from L1, H1, or the middle point since the
source is far away.

(0.5 for a line and another 0.5’ for the whole cone)

Note: If exact spherical waves are used, and the correct
result is obtained, that’s also fine. But the computation
1s more complicated.




B3

For the 2016 LIGO event, the binary black hole system is about 1022km
away from the earth. The two initial black holes are 36 M and 29Mg. The
final black hole is 62Mg. The missing mass has all emitted away as GW
energy. At 1000 km away from the center of the black hole merger event, the
amplitude of GW reaches Ay =~ 0.01 . The energy density of GW is
proportional to its amplitude squared. What’s the GW energy Ej that passes
through the earth?

fE 2016  LIGO KILMG| 1 dftrh, XCRTF RS FEHIERZ)10%%km.
PIAN B IGE R EN 36Mg Al 29Mg, A IFEHI BB EN 62Mg.
REPUR TR EA AT ik re a2, R B A JFH
e 1000 km AL, 51 TR HRIEA Ay =~ 0.01. 5] J1J e =% IE L
FHIRME T 5. SRS HIBRIG 5] Sk A& Eg o

2 points
25}

The energy emitted: E = AM ¢? = (36 + 29 — 62)%x1.99%103°x(3x108)? ] = 5.37x10%*" ]

(")

The energy fraction that comes to the earth:

m(6370)2
4% (1022)2

= 1.01x10737.(0.5")

Thus, the energy passes by the earth is 5.45x101° J. (0.5”)

B4

For the same conditions as given in B3, what’s the amplitude A of the GW
when they pass by the earth?

f£5 B3 MHIAIMIZRAE T, SRS B BIE BRI (kIR A.

1 point
14y

Consider a shell of GW. From energy conservation, energy density of GW ~ 1/(distance)*2. (1”)
Thus, the amplitude of the GW decreases inversely proportional to distance:

A=0.01x

1000 _ ,
= 10721 (1)

BS

GW can be used to study astronomy and cosmology. Consider the expansion
of the universe as an example. In the Newtonian gravity concepts, the
expansion of the universe can be considered as objects running away
(recession) from us. GW astronomy can be a way of studying the relation
between distance and the receding velocity, and thus studying the expansion
history of the universe.

FATAT A 51 JJR I 5 RSO A 7l 5. Biltn, BF e gk, 7e7F
WG A, FE KT DA SO R s A T (GRAT). Sl ik
KI5, FTDABFFER AR R & 5 IR AT Aok &, JETRIE 50 7 1 1) I
K3 52

For GW events with optical counterpart (for example, neutron star mergers),
the receding velocity is measured by the Doppler effect. The Doppler effect
of which of the following can be used to directly measure the receding
velocity? Choose one from A-D below:

A. Synchrotron radiation from the neutron star

1 point
14y




B. Emission or absorption spectrum of elements
C. Charged particles emitted from the neutron star system
D. GW emitted from the neutron star system

X FAEAE G A0S BRI 5] TSR (Bl b1 2 9F ), T RlEd 2 i
BN IN R AR IRAT L o LA WIS B A 1 22 3 B 28O TT DL LR
PRI ERATHSE? A A-D L

A K E R F SRR L A
B. JC I B WSRO
C. HhT IR R GG H 1 L T

D. ¥ 2 RGN 5] 11

B. (1) Because only the element spectrum has known frequency at emission. By comparing the
observed frequency and the known emission frequency, we know the receding velocity.

Part C. Interaction between GW and Matter (10 points) 5| A3 FY R KA E/ER (10 4)

The “ripples of space” is too rough for understanding the effect of GW on matter. More
concretely, one can use Newtonian physics to understand GW when its amplitude A is small (the
calculation can be reproduced in general relativity in a local Lorentz frame). In Newtonian
physics, the spatial length is not fluctuating. Rather, the effect of GW on matter can be
considered as a periodic force proportional to sin(wgy, t) acting on matter when GW (assuming
GW is plane wave with constant amplitude) passes by.

TR D PRE S| P, ISR XA UL T . SRR, 5] IR
g A AR/, BATAT BAE AR 2 MRS R UH S S 0B R (48 U ie I Y
Jtsis AR 2L &, W AR AR WU B SR) . FEAR IR rh, 2R AR B AN AT KR AR AL
S S E IR, 51 714V — A IEH T sin(wewt) FITEM 770 X BLR BT
TIBAPTIEG RN AL

The amplitude A (assuming A << 1) of GW has the following effect on matter: if two free test
mass particles (each has mass m) are separated by r without GW. With GW passing by its
perpendicular direction (throughout Part C, we assume the propagation direction of GW is
perpendicular to the line of the two particles), their distance changes from (1 — A) to r(1 + A)
periodically. The oscillation of test particle is of the pattern below (we draw many test particles
to show the effect of GW more clearly, but in the problem let us just consider the two particles
P; and P,).

IRIEA A (B A « 1) B9 3B B0 RN 8 584 B l ek 1, &4
Ry MR me A 51 D BaEE R, PSR Z IRy re A 5 T BIRTER
TR LR T I (A C R, 75 RE S| J1BAR IR TT A 5 PR T IE L TS 1 T H),
PIAKLF Z R B E r(1 — A) 5 r(1 + A) Z AN . R ge ks 1435 a0 K BB
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Now, connect the two particles with a spring with spring constant k and
unstretched length r (i.e. the spring does not change the initial distance
between particles without GW). Assume that the spring is light and the force
that GW acts on the spring is negligible. For k > m w?,,, calculate the
oscillation amplitude A’ between these two particles when GW with
amplitude A pass by, such that the distance between the two particles change
between r(1 — A") and r(1 + A").

Note: Here we assume the two particles have minimal kinetic energy as
allowed in the above setup. (Otherwise additional kinetic energy can cause 3 poi

oy e . . . points
C1 | oscillations with larger amplitudes for the spring.) 3 4%

BUAE, R ISRL T SRS E R R . SRR REON Kk, KO r
(w2, B 5 FIBOEE R, SR EA SR T AR B B o Bisest
AR, S| PAF AT LR T L2 . £ k> m wgy KITEDN
T, HEIRIEY ARSI BGEE N, BT RIIRIE AT X H ATE X
N, G BGEER, R TEEEAE r(1 - A) M r(1+ A7) ZIAZfk.

VE: ARBIRL T B RE A2 T LA 2 B MmN alisg . (B, A
fushfen] DL E0SIIRS), DURERFIRME. )

For free test particles separated by r, let the position of each particle is x = +r/2, and let’s
study the particle with x = r/2. Let the periodic force be F = F; sin(wgy,t) acting on this
particle.

Integrate F = mix (0.5”) twice (or you first guess the form of x, and determine coefficients by

taking derivative), we get x = - — Mﬁawt) 0.5)
2 mwew

Compare it with the definition of A, we get F,, = %mwéw. (0.5%)

An opposite force will act on the particle located at x = —r /2.

Now, for the two particles connected by a spring:

The condition k >» mw?%,, indicates that the frequency of GW is very slow. Slowly acting a
force on the spring, the length of the spring just follows the force (0.5”). The maximal length that

the spring stretches is 7 + % =r+ %mwéw 0.5),ie. A" = %mwéw (0.5%)




Alternative solution of C1 - C2: Instead of considering half spring, consider the full spring:

T N T .
Letx; ==+ x{oSin wey t and x, = — =+ X, Sin Wy t.
173 10 GW 2 2 20 GW

2
—Mwegw 0 X100\ _ (—k k\ (*10 ( Fy )
< 0 —mw(z;w> (xzo) B ( k —k) (xzo) + —F,
k — mwé,, —k (xlo) _ ( F, )
—k k — mwiy, ) \X20 —F,

(xm) _(k—mwéy —k _1< F, )
X20/ —k k — mwéy —F,

_ 1 k — mwéy, k ( F, )

(k — mw?,)? — k2 k k — mw?2y, ) \=Fo

Distance between the two particles:

. 2mawgw Fo .
d=x1—x; =1+ (X190 — X3) SinWgyt =1 — & — mw?) — k2 sin wgy t
(mwgy)?A .
d=r [1 — k= ma2, )2 — 2 sin wt

2 )2 2
Cl: When k >» mw?, A’ ~ (mwgw) 4 _ mogw 4
2kmwagw 2k

2 2
C2: When k € mw?, A’ = (mogw) 4 ~A+—2A

2 P
(mawéy) —2kmwiy, mwey

For the same setup as Part C1, but k < m w?,,, calculate A". Keep the linear
terms in k, and the higher order terms in k can be neglected (i.e. if the exact
result is A + Bk + Ck? + ---, we require that you get A + Bk and you can .
(2 | neglect higher terms Ck? and so on). 3 points

Bk < mady, HMEM4S cl MR, A xR, RAEEEEE | 37
IR ERY, kR BT 2N . (R, WA s R A+
Bk + Ck? + -, WARTEE S A + Bk VKT LLZNE Ck? @i, )

From symmetry, the center of the spring will not move. Thus, let’s consider half spring from the
center to the particle to the right. The spring constant of half spring is 2k (0.5”).

The Newtonian 2™ law: m¥ = F, sin(wgyt) — 2k (x — g) (*) (0.5%)

In principle, this equation (*) can be solved exactly without assuming the condition between k
and mw?,,. But as we do not require to solve complicated differential equations, here we just

work out the solution assuming small k.

Let x = x© 4+ xM 4+ x® 4 ... Where the superscript indicates the order in k. (0.5’) We will
ignore x® and higher terms.



r  Arsin(wgwt)

We have already solved x(® = . (free particle with k = 0). Insert it into (*), we

get
5(.(1) _ kArsu;(leWt) . (05,)

Similar to the case in C1, integrate this equation twice, we get
X(l) - _ kAr sm(ZwGWt) . (05,)
maowgy
Thus, up to linear order in k, the maximal distance is the maximal of 2(x(® + x™)). The factor
of two is because we have two particles at x = +r/2. Inserting the above results, we have
r_ 2kA ,
A —A+mwéw.(0.5)
Note: If you directly get the exact solution of (*), it is also correct. The form is
A
A= 12k

- 2
mwGW

2

For the same setup as Part C1, but k = m w2, /2, qualitatively describe how
the distance between two particles changes with time. No explicit calculation
C3 | is needed. 14
Wk =mwdy/2, HAZMS C1 HAHR], 8 PR IR PRLT 8] ) R 2

eI (B AR AL . o E BT

1 point

Resonance happens. The distance oscillates (0.5”) and the amplitude of oscillation grows with
time (0.5”).

We’d like to estimate when GW pass through the earth, how much GW
energy the earth can absorb. The earth is a system that the pressure of matter
balances self-gravity. The real earth is too complicated but let’s consider a
toy model of the earth, as two particles at rest separated by r = 6000 km,
each particle has mass m = 3x10%* kg. The self-gravity between these two
particles are balanced by force provided by a light spring connecting these
particles. And the unstretched length of the spring is 7000 km if no force acts
on it. For the GW signal described by Part B3 and B4, with frequency f =
100Hz, estimate the order-of-magnitude of energy absorbed by the earth from
C4 | one period of GW oscillation. 243

PATVKE Al TH 2 5] Dy o i BRI, HIERWT DRI 2 /b Re s . ke — A4
HES LS5 P RSt HSERIERIER 2% . K REATHEE
HER BT EAR A 2 R8PS R T AR ER = 6000 kmo RSR[5
EAmM=3x10%*kg. PRI 20— REFEIER . #ENH NS
PIRL T Z [ 51 1P . B AR 77, #7000 kme Xt T
B3. B4 IR, HZN f =100 HzlI 5] JpfE 5, RAETI ) —
NIRRT, BRI e (TR R,

2 points

10



_ Gym?

First estimate the spring constant of the earth: Fyyay = kAr = === Thus, k = 1.67x10'°kg/s.
(0.5%)

Now determine the spring constant is for which case (C1-C3):

mwsy,, = 3x10%*kgx (100x2m Hz)? > k . Thus, we can use the case of C2. (0.5°)

For order-of-magnitude estimate, the size of the earth simply change by an amount §r = r4 =
6x10715m.

For each period, GW first slowly stretch the earth to do work, and then the work is dissipated to
the earth (for example, the heat in the spring in this case) when the spring returns.

The force is about Fy = %mwéWAr = 3.5x10%°N (0.5")

The work GW does in each period is W = Fyé6r ~ 21]. (0.5) (To be accurate, there is an
average of sin(wgy ) cos(wgy ) over two of 1/4 periods. But here we are only interested in the
order-of-magnitude.)

Black holes are so dense objects that even objects travelling at the speed of
light (such as GW) cannot escape. For a black hole with mass the same as that
of the earth (and at the same location as the earth), calculate the amount of
GW energy that the black hole absorbs for the event described in Part B3 and
cs | B4. 1 point
S AR O R A B DSBS S iR (Bl i) RRE | 197

REH PRI . R — AN, SHERA FERER R, AT S HERF R
fr#E . XT B3, B4 TR G IPAF T, KL BRI 51 773 e

=
Ho

Escape velocity: v = /ZGTNm =¢.(0.5°) Thus, r = 25N — ),0088m. (0.5%)

G2 -
Note: using Newtonian mechanics instead of relativity, we are actually making two mistakes: (1)

light & GW are actually massless particles instead of massive ones, and their momentum-energy

relations are relativistic; and (2) the Newtonian gravitational potential is not enough to describe
2Gym
c2

gravity. Coincidentally, these two mistakes cancel each other’s effect, and r = actually
holds even in general relativity. But in general relativity, even if GW did not touch the horizon

r =259 bt instead reaches r = 3G’Zm (photon sphere), GW will eventually fall into the black

c? ’ c
3Gym
hole. Thus r = =&

CZ
mechanics.

is also considered correct, though it does not follow from Newtonian
2
Compared to problem B3, the GW energy come to the black hole is 5x101° Jx (2':(1)33)2 =

1.04x1077J. (0.5°) Since GW cannot escape the black hole, this is the GW energy that the black
hole absorbs. (0.5”)

If you use E = hv for the graviton energy, or use angular momentum conservation to calculate
the condition for the GW to be absorbed, they can also be considered correct. There is an unique
answer in general relativity, but you can use different ways to model it in Newtonian mechanics.

END of Problem 1
] 15

11
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Problem 2 Synchronization (34 marks) F2F (34 43)

Synchronization is a very common physical phenomenon. As early as in the 17" century, the
famous Dutch scientist Christiaan Huygens observed that when two pendulum clocks are
suspended from a common beam, they tend to oscillate in synchrony. In part A of this problem,
we will consider a model of this phenomenon. In part B of this problem, we will consider a
modern example of synchronization. Students can work on either part first before working on the
other part.

A0 — AR W BB R . FAE 17 1D, 2544 BT 22 R 5 o HLI 5 22 « B il
MELE], M FPRR BB R — R B, e SFPRE . XA A
A, FATEEEZXFMB R — MR FEXAFER B f, ALK EE A
IR 7RG R S5 At — B, B5Em &k

A. The Pendulums (23 marks) B8 (23 )

A single pendulum consists of a bob with mass m suspended vertically from a fixed point with a
massless string of length L, subject to gravitational acceleration g. Let q(t) be the angular
displacement of the pendulum from the vertical at time t. When the bob moves, it encounters a
constant frictional force of magnitude mLb in the opposite direction of motion.

AR H AN TEmENMISRA R, PPN A T RS, IR EINEE g
g, @1 RARE, KENL. {ERME, SPRENEETREAME NqE). 4
YRy, A —8BUEN mLb WHEE FEE IE R T eiash i [ J7 ) L.

Write the dynamical equation of q(t) for small oscillations. 2 points

ALl 2 N RE I g (0 03 712 AR 24

Remark: To keep your equation simple, you may introduce the angular frequency

wE: N VTR ACE R, A5 AR

w={?
L’

and use the sign function defined by

A T T Pfr e S IE 8 PR 2
1forf >0,
signf =< Ofor f =0,
—1for f <O.

Using Newton’s law of motion,
mL _Zq = —mLb sign (—q> —mg sin
dt? dt i

For small oscillations, sin g = q. Hence

12



4 = —b signg — w?q,

where § = d?q/dt? and ¢ = dq/dt.

To compensate the loss of kinetic energy due to the friction in each cycle, the pendulum receives
a kick every cycle. To simplify the calculations, we assume that the kick takes place when g =

—b/w? and its angular velocity is positive.
g y18p

N T AMET RN I BRI S| BUR B RER R, FRREE I = 2 Bk BEh. N

TGS, AU K A q = —b/w?IF B2 E AR N IER .

convenience, we choose t = 0 at the n™® kick in this part and below.

FEnR I TE Nt = 0.

For clarity, give your answer in three parts:

Ay | PRI, U =HA e R

(a) The first quarter of the cycle,
(a) B2 —HI A,

(b) the second and third quarters of the cycle,
(b) B AN =AU 7 2 — 1 3,

(c) the fourth quarter of the cycle.
() Z VI P52 — K I -

Suppose that the angular velocity of the pendulum is u,, immediately after
the n™ kick. Calculate q(t) and ¢(t) in the cycle after the n™" kick. For

TEBE 4 (0 A1 S P AE SR B Bl A 18] Ay, o« (£ Sim IR 30 ) 1) JA 4
T, SR qOMG(e). ATTER I, AELE S LA T, BATTBE

2+2+2
points
2+2+2

(A2a) In the first quarter of the cycle after the n™® kick, the angular velocity is positive. Hence

G = —wz(q+i>
w?)

The solution is a simple harmonic motion centered at ¢ = —b/w?. Hence the solution takes the

form
) b O
= ——+ —sinwt,
1 w?  w

and

q(t) = u, cos wt.

(A2b) In the second and third quarters of the cycle, the angular velocity is negative. Hence

13
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2

..=_w2< _i)
q 9= 3)

The solution is a simple harmonic motion centered at ¢ = b/w?. The initial condition at t =
/2w is q (1) =— % + u—’; and g (1) = 0. Hence the solution takes the form
2w w w 2w

qt) = — [q (2:)) - iz cos (wt - g),
Q(t) = iz (%—i—b> sin wt,

and

, 2b
q(t) = (un - Z) cos wt.

(A2c) In the fourth quarter of the cycle, the angular velocity is positive. Hence

G = —wz(q+i>
w?)

The solution is a simple harmonic motion centered at ¢ = —b/w?. The initial condition at t =
3n/2w is q (3—n) — 4+ =" and ¢ (l) = 0. Hence the solution takes the form
2w w w 2w

e )

b u 4b
q(t) =——+ (—n——> sin wt,
1) W w?

and

, 4b
q(t) = (un - Z) cos wt.

Suppose at each kick, a fixed amount of kinetic energy of the magnitude
mL?h?/2 is injected to the pendulum, where h has the dimension of an
A3 | angular velocity. Calculate the relation between u, ., and u,,.

BRI B SIN, GEIEN mL2h?/2 MEhRepENEI s, Hdp 29y
hEA AR EN . B, 12w, AR R .

2 points

At the end of the n™" cycle,

14



. 4p
Q(t) =Up — Z

At the beginning of the (n + 1) cycle,

1 1 4b\* 1
EmLzu,ZL+1 = EmL2 (un — Z) + EmLZhZ.

Therefore

4b )
Ups1 = (un—z> + h?,

A4

What is the value of u,, after many kicks?

adZmEshE, uw, WEELZTA?

2 points
25}

After many kicks, u,,,; = u,. Hence

4b\*
uz = (un—z> + hZ.
_h2w+2b
=gy Ty

AS

Suppose that at time t, during the first quarter of the cycle after the n™" kick,
the pendulum receives an angular impulse equal to mL?a. Calculate the time
at which:

A R BRI — I 2 — P, SR T 58 miPa
SR TS T AL )

(a)the friction changes sign the first time,

(a) BEHE I 188 — IR AL T Al

(b) the friction changes sign the second time,

(b) BEHE 158 — ke A J7 [l B

(c) the pendulum receives the (n + 1) kick.
(c) BARZHHn + LIXGBIN

Give your answer to the first order in a.

ERMFE AT EalIZH B

3 points
35

15



(ASa) After the pendulum has received the angular impulse at time t,, the pendulum motion
takes the form

b b q(to)
q(t) = —3 + (q(to) + E) cos(wt — wty) + sin(wt — wty).
Since q(ty) = —% + 1;—"sin wt, and q(t,) = u, cos wt, + a, we have
®) b+u”' t, cos(wt t)+u” to sin(wt t)+a'(t to)
= —— + —sin wt, cos(wt — w — cos wty sin(wt — w —sin(wt — w
q 22w 0 ) 0 a) 0 0 a) 0

uTl . a o
= —— +—sinwt + —sin(wt — wty).
w? w
q(t) = u, cos wt + a cos(wt — wty).

The friction changes sign when ¢ (t) = 0. Suppose this takes place when wt = g + &. Then

s s
0= uncos(§+s)+acos(§+£—wt0).
a sin wt
Ex —.
un
T  asinwt,
t=—+——7-—.
2w wu,

(AS5b) After the friction has changed sign the first time, the pendulum motion takes the form

q(t) =%+[q(%+£)—%]cos(wt—g—e).

W
Note that
(TL’+8) b+un_(7'[+ )+C¥ . (TL’+ t)
—+—)]=——+—sin{=+¢)+—sin|{=+e—w
T2 o w? 2 ) 2 0
b u, a u, b «a
~ ——+—cose + —cos(wty, — €) ¥ — — — + —cos wty,.
w?2 1) w w? w
Hence

t_b+<un 2b+a t) (t T )
q()—w2 oz T gcoswty)cos{wt ———¢).

16



. 2b _ T
The friction changes sign the second time when g(t) = 0. This takes place when wt — g =

1. Hence

; 3n  asinwt,
- 2w wu,

(A5c) After the friction has changed sign the second time, the pendulum motion takes the form

b 3t ¢ b 3m

a®) =~ g5+ |a (g + ) + o cos(wt -5 <)

Note that
3m ¢ b u, 2b «a 3n T u, 3b «a

q<%+a>=E+(Z—E+5coswt0>cos<7+s—E—‘s)=—E+E—Zcoswto.
Hence

N = b (un 4b+a t) (t 3n )

q(t) = 2 W oz T coswtp Jcos|w > " £)

The pendulum receives the (n + 1)™ kick when q(t) = —b/w?. This takes place when wt —

3T T
— — & = —. Hence
2 2

2w asinwt,
t=—+—
W WUy,

Suppose that the time t, at which the pendulum receives an angular impulse
equal to mL?a is in the fourth quarter of the cycle after the n™® kick instead of
the first quarter. Calculate the time at which the pendulum receives the
A6 | (n + D™ kick. Give your answer to the first order in a.

BB BB B2 A e mI2a (I Wt S fE SEn kBB I AN 32 | 2 a
—MARE NS — WA TR B0 + LR B E) )
[, FRNREXEIT EalIZE P

2 points

After the pendulum has received the angular impulse at time ¢, the pendulum motion takes the
form

b b
q(t) = 3 + (q(to) + E) cos(wt — wty) + q

(to)

sin(wt — wty).

17



2

Since q(ty) = — % + (u—(: = :—Z) sin wt, and q(t,) = (un — :—b) cos wty + a, we have
b u, 4b\ . u, 4b i
q(t) = ——3 + ((XE - E) sin wt, cos(wt — wty) + (; - p) cos wty sin(wt — wty)
+ Zsin(wt — wty)
b u, 4b\ . a .
=-——+ (— — —2> sin wt + —sin(wt — wt,).
w w w

4b
q(t) = (un - Z) cos wt + a cos(wt — wty).

The pendulum receives the (n + 1)™ kick when q(t) = —b/w?. Suppose this takes place when
wt = 21 + 6. Then

u, 4b\ . a .
(— - —2> sin(2w + 6) + —sin(2m + § — wt,) = 0.
0w )

a sin wt,

~ —_ b
Uy ®
21 a sin wt,

o (-2

Now consider two pendulum clocks. Let g, (t) and g, (t) be the angular displacements of the two

clocks. The bob mass m, length L, friction parameter b and kick size h of the two pendulums are

identical. Suppose that when q, = —b/w?, pendulum 2 sends a small angular impulse equal to

mL?a on pendulum 1, and when q; = —b/w?, pendulum 1 sends a small angular impulse equal

to mL?a on pendulum 2. (Here, a > 0.)

DUAE FE A S48 . WA SR 0 F LR 20 B R gy (D Pl gy (0 P BRIR IK /N BT Hekm
KIEZL. FEHESHOMGE KN R Bk tq, = —b/w?i, $4E 2 K — M EE

FmL2af)/NaFER R 1. Mg, = —b/w?i, HI3E 1 RH—MUEAML2al)/NMath &

g2, (XHa>0.)

Suppose the phase lag of pendulum 2 relative to pendulum 1 is ¢, at the
beginning of n™ cycle of pendulum 1, and 0 < ¢,, < /2. Calculate the
A7 | relation between ¢,,,, and ¢,,.

A AT 1 S A IR TFIART, IR 2 AR THAT 1 ez | 47
by HFO0< ¢, <m/2. I E Py M, ZHHFIKFR

4 points
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Figure: An example of how the phase lag of pendulum 2 relative to pendulum 1 is reduced in a cycle. Initially, the
phase lag is 0.2 cycle. At wt = 0.2, pendulum 2 sends an angular impulse to pendulum 1. The angular velocity of
pendulum 1 increases, causing the instant of the next kick to postpone from wt = 1to wt = 1.02. At wt = 1.02,
pendulum 1 sends an angular impulse to pendulum 2. The angular velocity of pendulum 2 increases, causing the
instant of the next kick to move forward from wt = 1.2 to wt = 1.12. Hence the phase lag is reduced to 1.12 —
1.02 = 0.1 cycle.

b +un .
= —— + —sin wt,
ql b (1)2 W

un a
q; = ) + Zsm(wt — ¢,

At time t, = ¢,,/w, pendulum 2 sends an angular impulse on pendulum 1. At this instant, the
phase of pendulum 1 is in the first quarter of the cycle. Using the result of (A5), pendulum 1
receives the next kick at

19
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2T  asin
t, =—+ asin gy
w wu,

At this instant, pendulum 1 sends an angular impulse on pendulum 2, and the phase of pendulum
2 is in the fourth quarter of the cycle. Using the result of (A6), pendulum 2 receives the next kick
at

TN R R R 1)

¢, 2m asin(wt; —¢,) 2r a sin ¢,
s —— = 3

Phase difference:

a sin ¢, . a sin ¢,

wt, —wt; =2+ ¢, — ap 2T~ T
U, — 3
asing, asing
bns1 = bn — 42 - w, .
Uy, — 3
When ¢,, is very small, calculate the number of cycles for ¢,, to reduce by a 2 Do
points
A8 | factor of 10. 243
o, AW D, T 5H o, I 10 18 i s B F L
When ¢, is very small,
4\t L 4p\"! »
¢n = ¢n—1 - (un - Z) a sin ¢n—1 — Uy asin ¢n—1 ~|l-a (un - Z) —au, ¢n—1-

Note that for the system to sustain many kicks, u,, — % > 0. For ¢,, to reduce by a factor of 10,
1 A ant
0= 1—a<un—z> — auy, ~ expy— (un—z> +u, |aNg,

¥ =222 ] o
ol U, n 10.

Remarks: This part of the problem is adopted from [1]. In that reference, the angular impulses
are negative, leading to the two clocks synchronizing oppositely. This agrees with Huygens’
observation. On the other hand, there are experiments such as metronomes placed on flexible
platforms that show congruent synchronization.

[1] H. M. Oliveira and L. V. Melo, Huygens synchronization of two clocks, Sci. Rep. 5: 11548
(2015).
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B. The Power Grid (11 marks) M (11 43)

Synchronization is an important concept in the transmission of electricity in the power grid. The
power grid is a network of nodes and links. Each node is an electric generator or other power
consumption devices. The links are the transmission cables. Electric power is transmitted in the
alternating current (AC) mode at 50 Hz or 60 Hz at a fixed voltage. However, the AC voltage of
each node in the network has a slightly different phase.

[ 20 7 ol I FE T ) — D BB . R AN Y RO BB A BRI IR 2% o RN R
R MBI AR R & . BERR R AE RIS, HJIs HACHE (AC) BEECEL 50 Hz 5% 60
Hz Wi 4 [ 52 i AR . (2, WIE P A5 f B 52 i B s B A I A [R] B AR AR

2

Consider a transmission cable connecting nodes 1 and 2. The inductance of
the cable is L. The electric potentials of nodes 1 and 2 are Vj(t) =

V cos(wt + 6;) for j = 1,2. Calculate the time-averaged power transmitted
B1 | from node 1 to 2. You may neglect the time dependence of 6.

SR R 2 MR, BANRERL. A 1A 2 s | 0P
NV() =Vcos(wt + ), Fedj=1,2. FEMTT R 1 AERETT N 2 1
I} )~ 2 T2 1/J\Tu@%9,ﬂﬁﬂflﬂ1&$ﬁf o

3 points

Potential difference of node 1 relative to 2:

6, + 6 6, — 6
V(t) =V cos(wt + 6,) — V cos(wt + 6,) = —2V sin (“’“’ : 2 2) Sin( : 2 2>'

Current from node 1 to 2: V(t) = L—— ( )

6,+86 6,—6 2V 0, —06 0,+6
I(t)=—j2Vsin<wt+ ! > 2)sin( ! > 2>dt——sin< ! > 2>Cos<wt+%>_

implies

Power transmitted from node 1 to 2:

2V? 6,—0 6, +6
P(t) =I(t)V cos(wt + 0,) = " sin( L > 2) cos (a)t+ L 2

V2 . 91_02 01_92 301"‘92
_ESHI( > )[cos( > >+cos<2wt+—2 )]

) cos(wt + 6,) =

Average power from 1 to 2:

(P) = V_Zsm (01 _ 92) [cos (91 _ 62) + (cos <2wt + @))]

2 2
VZ . 01 - 92 91 - 62 VZ .
= Esm( > ) cos ( > ) =57 sin(6; — 6,).

A network of electric generators and motors, labeled j = 1,2, ..., N, are connected with each
other. Their electric potentials are Vj(t) =V cos(wt + 9]-) forj =1,2,...,N, and the inductances
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2

of the connecting cables are L. The generator or motor at node j rotates with the phase angle

wt + 6; and its moment of inertia is I. The external power source or drain is P; (P; > 0if jis a

generator, and P; < 0 if j is a motor). At the same time, the power dissipation due to friction is

given by k(w + 6,)?/2 atnode j.

—NAEL,  HR AL RSN e AR T R, R AL R EINLIARIE A j = 1,2, .., N
AT RA RV () = Veos(wt +6;), Hj=1,2,..,N. HTEEEN& AR HELS,
FHEONL . 15 AL R I LERFL B LU M wt + 0, 1ie%e, FLResh &N M RE

BERTEHFE P, (RN, P> 0. R RHEEN, P <0) . FIN, {575

REgR RN k(0 + ;) /2.

Derive the dynamical equation for 6; as a function of time. Assume that the
rates of change of 6; are much less than w, such that the dynamical equation
B2 | can be approximated by retaining only terms up to the first order of 6;.

S 1 6; LA 18] 2 & B i 8 22 07 R e RO AR R/ T,
1550 /32207 R AT il A OR B 220, 1Y 58— Bir IR AL

2 points
25}

Using the conservation of power,

d [l Ny V2 i K £ N2
Pj =E[§(w+9j) ]+stm(9j—6k)+§(w+9j)
k%j
Hw+8)+ > L sin(6, — 6,) + 5 (0 + 6,2
= (w+ j)j+ 'mSIH(j— k)+§((1)+ j)
k+j
. /A Ko, :
~ lwb; + stm(ej — Gk) + Ew + kwo.
k+j
. . Pk V
19]+1c9]-=5——w+z

2 2wl
k%j

2

sin(Gk = 6]-).

The dynamical equation of 6; is similar to that of the coupled oscillator
network shown in the figure. It consists of N particles free to slide on a
smooth circular rail of radius R without collision. Each particle has mass m
and is subject to a force F; for particle j in the tangential direction of the
circle. When a particle moves, it experiences a damping force that is equal to
minus the velocity times the damping constant b. Each pair of particles is | 3 points
connected by a spring of very short equilibrium length and force constant k. 347
Derive the dynamical equation of the angular positions 6;, and fill in the table
on the answer sheet with the physical terms for the coupled oscillator network
and the corresponding terms in the power grid.

B3

6, 180 715 i B AR B s IR & R s U 4% o B NS T] A2
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PRV R R HUE _E B i 3 i 3o Rl R 5 4R BESRET R
EAmM. K1 j E£RYIZTT L2 7) FRE- . SR #shin, &
SR HIRHJE 715 T ofe LA RH JE W Hob i B {8 . X RT3l P A
B EL R B kPSR . A Ee KB TR, Jf

FEZE AR B 1A 9IS R 1541 2 45 I 465 110 0 2 TR L ] e 8 ) 2
i

Force of particle 2 on particle 1:

6, — 6
F,, = k2R sin( 2 1).

2

Its tangential component is

0 0 7] 0, —06
Fioe = Fiy C05< 2 7 1) = k2R sin( 2 5 1) cos( 2 5 1) = kR sin(8, — 0,).

Using Newton’s law for circular motion,

d*6; do; _
I—— = RF,—Rb—=+ Z kR sin(6; — 6;).
k+j
Torque due to Torque on
Moment of . que au particle j due to
inertia Damping torque Elﬂe;(lf(;l;ln'jjll glrél(’:];ﬂ particle k
2l it e S
B L0kt
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Coupled
oscillator d*6;
network dt2
15 IR 1 s X 2%
Corresponding
term in the 5
power grid d”;
HL [ o AR N A7) dt?
FHIN
Moment of Dambine toraue Torque due to | Torque on particle
inertia ping torq external force Jj due to particle k
Coupled 20 do-
oscillator d ‘Zf r2p %% RF; kR? sin(6, — 6;)
network dt dt
Corresponding 20, do. p. 2
term in the d 2’ K — L —Ew V—Zsin(ek — 9]-)
power grid dt dt w 2 2w4L

Consider a fully connected power grid with N, consumer nodes and N

generator nodes, and friction is negligible. Each consumer node consumes
power P and the total consumed power is evenly provided by the generator
nodes. Calculate the phase difference between the generators and the .
B4 | consumers at the steady state. 2 points

Hp— AN AT RE R T AURIN, N R LT AR s e, | 29
o B 2B R, RN DRGSO FETI P, I LA R RETh %
R L AR . R IRAS T R HLHLRTIIRE B % 2 ] A £
%,

At the steady state,
T A
> + stm(ek —6,)=0.
k+j
For the generators,

NP N.V?2
N,w 2w?L

sin(6, — 6,) = 0.
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For the consumers,

P N,V?
——+
w 2w3L

sin(6, — 6.) = 0.

The two equations are dependent. Solution:

. (2wLP
6y — 6, = arcsin .

N,V?

Calculate the minimum number of generators to keep the power grid in part
B5 (B4) synchronized. 1 points
THEAE (B4) R i s ZERRAE R KD, KV BERNTE | 14
Z /DR
2wLP
<1,
N,V2

Hence the minimum number of generators is

2wLP
Ng,min = p2
(or more precisely, Ny nin = ceiling function of Ztgp).

Reference: F. Dorfler, M. Chertkov, and F. Bullo, Synchronization in complex networks and
smart grids, Proc. Natl. Acad. Sci. USA 110, 2005-2010 (2013).
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