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1. A U-shaped glass tube (9 points) U FEIFEEE (947)
A U-shaped glass tube with a constant cross-sectional area contains mercury (with density

pug = 1.36x10* kg-m™3). The two ends of the tubes are sealed; one contains gas A, the other
contains gas B, both of which are ideal gases. In this problem, you can take the gravitational

acceleration g = 9.8 ms™.

EAEEREERN UPEIEE AR (BAHEEpy, = 1.36x10*kgm™) < EHIH
Ui R I A SR A SB—Ima A SR B o MEEEERSUE o XML
IR AR EE S g = 9.8 ms™ -

n 0 A

M WL L

(a) (b)

First, we set the tubes vertically, with the two ends up (Fig. 2a). The parts filled with gases A
and B have lengths [, = 12 cm and [z = 18 cm, respectively. Then we turn the tubes upside
down (Fig. 2b), the length of the parts filled by gas A and gas B are [; = 6 cm and I
respectively. The ambient temperature is T = 20°C.

B HATRETEERE - Mimel b (K 2a) - EFEASE AR BRIEHIHIEA
KL = 12 emfIKfEl = 18 cm » ZAEFATHE TEIE (K 2b) > HSME AFSE
B SEFEAVE TR T H I = 6 emAlllp « MEUREET = 20°C

(a) Calculate the numerical value of the length [ of the part filled with gas B when the tube
is turned upside down. [1]

(a) LY BERE EIT I A S B O KL IR0 - (1)
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(b) Calculate the numerical values of the pressures p,, pg, pa and pg of the gases for the
two orientations of the tubes. [4]

(b) HEIBIEE S B T E0ER DA, sl RIPREVELIE » [4]

(c) We look at the vertical tubes with two ends up again (Fig. 2a), but now we increase the

ambient temperature by AT = 20°C (i.e. T = T + AT). This leads to the changes in length

l; = l; + Al; and pressure p; = p; + Ap; (i = A, B) for gases A and B. Determine the

changes Al,, Alg, Ap, and Apg numerically. [4]

(o) TATHEMImE_ ERVEEREEE (& 2a) - HEIERIIENEIERE AT = 20°C
(BIT > T +4T) - XSESIE AN BRYKEL - [ + ALRIEEp; - py + Api(i =

A, BYZ AL - slETEREZAE Aly, Alp RIE5RZE(EAD,, ApsHIEUE - [4]

Solution:
(a) By assuming the volume of the mercury doesn’t change, the volume filled by the gases
doesn’t change. We have
Sly + Sl =S, + Sl
>lp=lL+1l—1,=24cm

(b) By assuming the gases are ideal and the temperature doesn’t change, p;V; is conserved.
piVi = piV{
= pala =pals’ and ppls = ppls’

In the case of the vertical tube (Fig. 2a), the pressure difference between two parts is
Pat pHgg(lB — 1)) =g
= pg — DPa = PugdUs — la)

Similarly, in the configuration (Fig.2b),
Pe + Pugd (s — L") = pa
= Pa—Pp = Prgd(p — 1)
Now we have 4 equations and 4 unknowns, we can solve them uniquely.
Pp=DPat pHgg(lB — L)

l l l
= Pa = Pugd <l1’9 — Iy +_B/(lB - lA)) (_A __B>

-1

I " 1p'
We get
ps = 24 kPa
pg = 32 kPa
ps = 48 kPa
pg’ = 24 kPa

(c) (Method 1: Keep 1* order term) By increasing the temperature, all variables are changing
accordingly,

T—>T+AT

p; = p; + Ap;

li - li + All

The ideal gas law becomes,




Solution

= piliS + (plAll + Aplll)S + A‘p;"A‘l}—S = TliRT + niRAT

piliS
T > We get

By dividing n;R =
Al Ap; AT
l_i+E_T (l —A,B)
Next, we consider the length variation,
(pp + 4App) — (P4 + Apy) = pHgg((lB + Alg) — (I, + AlA))
= (pp —Pa) + (Apg — Ap4a) = puggUp — ly) + pugg(dls — Aly)
= (App — Ap4) = pugg(Alg — Aly)

Finally, we assume the volume of the mercury doesn’t change,
AlA + AlB = 0

We get 4 equations and we can solve for 4 unknowns Ap; and 41;.

AT Al
- on= (£~ 29
l

= AlA = _AlB

AT  Alg AT  Alg
(?‘K) Pp — (— +—> ba = pHgg(AlB + Alp)

T ly
AT p p
= T (pp —pa) = Al (szgg + l_B + I_A>
B la

AT (pg — Pa)

T (ZpHgg + Zl)—: + %’)

:>AlB:

The numerical values is
Alg = 0.085 cm
AlA == _AlB == _0.085 cm

Aps = 2033 Pa
Ap, = 1808 Pa

(Method 2: Exact. Keep cubic term) We can retain the 2™ order of the equation,
(PiAli F Aplll)S + AplAllS = niRAT
All n Apl Apl All _ AT

+
i i vl T

Together with the equations,
AZA + AZB == 0
(4pp — Apy) = pHgg(AlB —Aly) = ZpHggAlB (4)

A Al AT Al
ﬂ(l__B>:_+_B
P iy ar A
ﬁ(1+_3>:___3
PB lp T lp

Sub. Into Eqtn. (A),
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AT  Alg AT  Alg
T g T + Ly
2|\ "7 I\ 7 |Pa= ZpHggAlB
AlB AZB
1+52 - =
lp Ly

Numerically, we get Al = 0.000814 m. (The other two roots are larger than [; and hence
we neglected.
Aly = —Alg = —0.000814 m

Accordingly, we get
Ap, = 1813 Pa
Apg = 2030 Pa

(Method 3: Keep 2" order term) When the temperature increases from T to T; = T + AT, Eq.
(1) becomes

lg h B T
1L PB L Pa = pgn, T
Letl} =1, +x.Thenli =lg —xandh, =13 — I = (I, — lg) — 2x = h — 2x. The
equation becomes
Pelp Pala T
— = h —2x)—.
lB — X lA +x pg( X)Tl
Expanding and keeping only up to quadratic terms of x,
T
pels(ly +x) —pala(lp —x) = PQT_ (h —2x)(lp — x)(ly + x).
1
(Ps — P)lals + (Pals + pals)x

T
== pg? [h'lAlB + (hlB - hlA - ZlAlB)x + (ZlA - ZlB - h.)xz].
1

3 2, — Tos_ 2, _ 2
6pgh” + 18pgh-x PI T [6h® — 11h*x — 3hx*].
1

T, 5 T 11) ,
(T 1>2h +<6T+3 hx + x< = 0.
x = —0.0814 cm.

which is the same as the exact solution.
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2. Bugon a rod (11 points) }F EEYE-F (1143)

A pendulum consists of a uniform rigid rod of length L, mass
M, a bug of mass M /3 which can crawl along the rod. The rod
is pivoted at one end and swings in a vertical plane. Initially
the bug is at the pivot-end of the rod, which is at rest at an
angle 6; (8; < 1rad) from the vertical as shown in the figure,
is released. For t > 0 the bug crawls slowly with constant
speed I/ along the rod towards the bottom end of the rod. L

BIEHKEL - FTEMOTINIMERF AR > —HREN
M /38T EFTIELT o FHE— Ut 3 R o BV 1 P R
ol o B it TAAVIREN > BT SEE T R —
TEHEAO; (0; < 1rad) (WEIFTR) © Et >0 RFITER
HPEFFAY R DA E 2RV 2R 18t e T -

(a) What is the moment of inertia I of the rod and bug about the pivot when the bug has
reached a distance [ along the rod. [1]

(a) BERTICEMIERIER L AR TSR EE 20 &2 1 2127 [1]

(b) Find the angular frequency w of the swing of the pendulum when the bug has reached a
distance [ along the rod. Express your answer in terms of L and . [1]

(b) HERFITEFTTEERER LI - HRH SRS EN R - BFEMLAERE - [1]

From now on, you can assume the speed of the bug is so small that [ hardly changes in a
period of oscillation and can be taken to be constant, and the motion of the bug can be
effectively described by simple harmonic motion, that is,

MIAETTEE - AT PUERGA T BRI /N - NI ERG AN LA 22 EZ1E
HARYEE - MERFHYZA A DA ST - B2

0(t) = 6,() sinwt

where w is the angular frequency you obtained in part (b) and 6, (1) is the amplitude of the
oscillation which will vary as the bug crawled.

Hep o ZIRE (b) B PEEIRIAHER > 6,(D BRSHIEE - FFhEE BT efTim L
& -

After the bug has reached a distance [ along the rod, calculate the following quantities when
it further crawls a short distance Al. In parts (c) to (f), express your answers in terms of Al,
AB,, and other parameters in the problem, where A8, is the change of the angular amplitude
during the displacement Al.

RHEFEEFLEEFTFIREES U5 YR TR TEEEAR NV E - 1£(c)
ZEDOE > BELL AL A AR EMSEFRIAR, HbA0, 2 IRZIEEEN LA
[EA & -

(c) Calculate the time-averaged work done AW by the bug on the rod-bug system. [1]
(©) W HEETEH T BT R GRS RSP THAW. (1]
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(d) Calculate the change Aw? in the term w?. [1]
(d) Kt How? W EAw? - [1]

(e) Calculate the time-averaged change AK in the kinetic energy of the whole system. [1]
(e) HIT RN RIS R ZIREN Z BAK . [1]

(f) Calculate the time-averaged change AU in the potential energy of the whole system. [1]
() BT ERAD RS RSP EE T BAU, [1]

(g) Summarizing the above steps, calculate the relation between 46, and Al. [3]
(g) &5 EHUPER > IHHAONIALZ [RIFYR 2

(h) Find the amplitude of the swing of the pendulum when the bug reaches the bottom end of

the rod (I = L). Express your answer in terms of 8,(l = 0) = 6,. [2]

(h) ZHERFEEMERR( = L) » IR PEEECHIEE - B 0,(1=0) =0, &K -
(2]

Solution:
(a) When the bug has crawled at distance [, the moment of inertia of the rod and bug along
the pivot is
1 1 1
I = §ML2 +§Ml2 =S gM(LZ + lz)
(b) The equation of motion of the pendulum is

d(m’)— MgZsing — Lmgising
- = g251n 3 glsin

S I Maz £ 126 + 2 mig = —Mgss 9(L+ l)
3 R e VI
For small oscillations, it becomes:
. 3L
21i6 +g(l+7)9
e e _
If the bug crawls so slowly that the change in [ in a period of oscillation is negliglbe, i.e. | =
v < lw, we can ignore the second term and write,
3L
g(t+35)e
12 +12
Hence the angular frequency of oscillation is

_ |gBL+20)
= R+

(c) Consider the motion of the bug along the rod,

M ('l' léz) __Mgcos6

3 -3 5
when f is the force exerted on the bug by the rod. As the bug crawls with constant speed, [ =
0. We get

6 + -0

6+ =0

_ Mg 9+M192
f= 3 cos 3




Solution

The frictional force is pointing towards the pivot. This force is exerted by the bug on the rod-

bug system to maintain its slow motion. Hence
M : Mg M Ml .
AW = —fAl = == (g cos 0 +162)Al ~ (—?g+?992 —?92>Al.
Since the bug moves slowly along the rod, the motion can be approximated by simple

harmonic motion. Averaging over time,
1
(62) = 0(sin® wt) = 593,
: 1
(62) = B3 w?(cos? wt) = szeg.

Hence
Mg Mg _, ML , 2)

(d)
dw® d[gBL+2D)] I(3L + 20)

1
dl dl| 22 + 12 _g[L2+12_(L2+12)2'
ot [ 1 _lBL+2h)
CEIETET @2t

(e) The kinetic energy is
K= 1M(L2 +12)62 + 1MV2
23 23
Averaging over time,
M M
K~—(L*+1»)w?0¢ +—V>2.
12( + 19)w*0§ + 6
Hence

M M M
AK = 3 (L2 + P)w?0,A0, + gla)29§Al + 12 (L% + 12)02 Aw?
M M Mg [(3L + 21)
= E (LZ + l2)w290A90 + glaﬂBgAl + EQ& 1-— LZ—-I—lZ
Substituting the expression of w?,
Mg

AK~@(3L+21)9 AB, + —=02Al
12 0770 T qp O

(f) The potential energy is
v=-_ML so-MI 5o~ —MI3p 4o+ M9 51 1 2062
= 5 CoS g osf~—— B .
Averaging over time,

Mg Mg

Hence
AU = —%Al + % (3L + 21)68,46, + %HOZAI.
(g) Using the work-energy theorem,
AW = AK + AU.
(— ? + % 02 — M?lwzg(%) Al = % (BL + 21)6,A6, + % 62Al
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Mg Mg Mg ,
3 AL+ (3L + 21)0,A0, + T 08l
Simplifying,
A90+1( L )Al 0
0, 2\3L+2l L[2+12)° "
A6 90( LI )Al
0™ 2 \3L+21 12+12)7
(h) Integrating,

1 1
In6, + Zln(SL + 20) + Zln(L2 + [?) ~ constant.
1
0o(3L + 21)%(L? + 1?)'/* ~ constant.
1

3\4
0,(1) ~ (1—0) 0,(1 = 0) = 0.74 6,

3. Falling magnet inside a conductive pipe (10 points) FF S EHE N T %HIBEEE (10453)
In this question, we consider the motion of a strong tiny magnet with mass M and magnetic
dipole moment p falling inside a vertical conducting non-magnetic tube.

AR > BAT 1 S EA TR M B R % A ER S IR E N

Hyizsf) -
I—vx I—“x
M p ) tube
magnet SIS, l magnet
14
ring
V4
1r] I
v B
VI
w B
B
a <W a

(a) (b)

(a) We first consider a ring (with radius a, length [, thickness w (w < a) and conductivity o)
moving towards the magnet with speed v as shown in figure (a). The magnetic field at
position 7 due to a magnetic dipole i = uZ (pointing downward as positive) at origin is given
by

BATERFE D (FEa > KED BEEw (v Ka) MSHEKRe) DUREvE#
Bl B (a) B o AR EEREIREER 1 = n2 (F518 NYIE) FrEEnviys o
LB AN
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(i) Calculate the components of the magnetic field B,(#) and B,(#) at the point 7 with

cylindrical coordinate 7 = (p = a, ¢ = 0, 2) [2]
() AR L B AN 73 EB, (MFIB, (7) > FENERELARNT = (p = a,¢ = 0,2) - [2]

(i1) Calculate the induced emf and current on the ring. [3]

(i1) THEEF EAVRA: FEEFA AT - [3]

(ii1) Calculate the magnetic force experienced by the coil. [1]

(iii) THEIFTIRLSZHIRETT - [1]

(b) Next we consider a magnet falling inside along a vertical conducting non-magnetic tube
of infinite length (with radius a, thickness w and conductivity o) as shown in figure (b).

(b) #ETRBNTFEREE —DERKE (BF+ e EEwWHISHERe) FVEEFHIE
HEMEE NS THINEE - A1 (b) FR -

(i) When the magnet falls with the speed v, it experiences a damping force with the
magnitude equal to yv. Calculate the damping constant y. [3]

(i) B UR Gy R - B2z —NREyvVIEES - HHEIBERE &y - [3]

Hints: The following mathematical identity may be useful.

fen - MRS RE A -

foo u?du _ 5w
(1 +u?)s5 128

(i1) Determine the terminal velocity of the magnet when it falls inside the tube. [1]

(i) SET R E N MITHYZA R - (1]

Solution:
(ai) We can use the cylindrical coordinate where
7F=2zZ+ap

Hence
2 _ Ho 1 3zp A A A
B(@) = 41 (22 + a2)3/2 (22 + a? (#2 +ap) = MZ)
g [J.O[J. 1 2 2\ 2 A
= B(r) = ((2z* — a*)z + 3azp)

41 (22 + a?)5/2

_ Hop (22° —a?)
41 (a? + z2)5/2
g - Mok 3za

P 4m (a? + z2)5/2

B,

(ail) The induced emf is given by

_ Uopv  3za?

€= jg(ﬁxB) -dl =2mavB, = 2 (a2 + z2)5/2

Alternatively, the flux through the ring is given by




Solution

¢ tott ¢ 3z° 1
¢ = f 2mpdpB,(p,z) ==~ | 2pdp T g
0 0 (p2 +2z2)2  (p* +2z%)2
a
222 2 a’
_ Holt 1 n _ Hol

3 1 2 3
(2 +292 (p2+207| % (a2 +2202
The induced emf'is given by
d®  popv  3a’z

T 5
dt 2 (g24 52y
and the resistance of the coil is
_ 2ma
"~ owl
Hence the induced current is
€ 2mavB vowl 3za
[ =—= L owl = vaawl = o

R 2na At (a? + z2)5/2

(aiil) The magnetic force experienced by the coil is
F = 1Q2na)B, = (2malw)ovB;

(bi) The total magnetic force experienced by the magnet is
3;10;1)2 f"o z%dz

F= de — (2na3wav)(

41 - (a? + z?)5
ou2u’wov “ uldu 45 2ulwo
= F = L Xf = Hok v =yv
8ma* o (1+u?)>5 1024 a*

bii) Newton’s 2™ law gives
g
dz _ d?z
MY~V = ™ae

. .d?
At the terminal velocity, d—; = 0 and

_mg _ 1024( a'g )

v, = —
YTy 45 \ppPwo

4. Heat flux between two plates (10 points) FFEIR 2~ [RIFVFGER (10 )

A system composed of two parallel plates at distance L from each other, which are at
temperature T; and T, respectively.

—DERGHPIERE ARG ~ BEE R L BT > A TRE T, FI T, -

(a) Calculate the heat flux density P (i.e. rate of heat energy flow per unit area) between two
plates if the space between the plates is vacuum and each of the plates has emissivity €. [4]

(a) WUERPHHHR 2 [RIFYZE Rl )@ H22 5 HE MREA LIRS = e TR (B0 P
BEE P (B RALEARYIREE AR ) - [4]

10




Solution

(b) Now the space between the plates is filled with a monoatomic gas of molar density n and
molar mass M. You need to estimate the heat flux density P between two plates according
to the following approximations:

e The gas density is so low that the mean free path 1 > L.

e Ti>T,

e When gas molecules bounce from the plates, they obtain the temperature of the respective
plates (for instance, if they are absorbed/bounded for a short time by the molecules of the
plate, and then released back into the space between the plates).

e You may neglect the black body radiation.

e “Estimate” means that the numeric prefactor of your expression does not need to be
accurate.

(b) AP Z [R] Y22 [B] T80 T B /R n MIEE/RI5T 8 M HY SR T 5UE - SRR 2R
?)%‘LATZLJLM FPER Z [RGB E L P
SEEEREPEEBE A > L.
e Ti>T,
o HRMEIT MR ELGEE - ETIEIREMHNARACRRE (F1d - AR EANTHEARE 73T
W/ SR AERIGAYIT (8] - PRIE R B Z ] Hy 2= [E] )
o [EAIZHERALTRLT -
MEET FREEAE I T A R E AL -

(1) Consider that there is an atom colliding with the hot plate and remains in thermal
equilibrium with the hot plate when it is reflected by the plate. Calculate the average
velocity square (v2), and estimate the average horizontal velocity (v;,) of the atom. [0.5]

(i) FE—RLIE TSP I BB E R S ST I SRR R - RSP
FEVT5(v) » AR FH KT (vy,) < [0.5]

(i1) Consider that there is an atom colliding with the cold plate and remains in thermal
equilibrium with the cold plate when it is reflected by the plate. Calculate the average
velocity square (vZ) and estimate the average horizontal velocity (v, ) of the atom. [0.5]

(if) % U T 5 A R I LU E A T S SRR - 1
REET7(03) 0 FER AT K (v,y) © [0.5]

(ii1) Find the average energy transmitted by an atom when it moves from the hot to the
cold plate. [1]

(iii) Hettt—NEF MBS Sh BRI (2 iy PEIRE R - [1]

(iv) Estimate the heat flux density P between two plates. [4]
(iv) (BT AR SRR P o [4]

Solution:

(a) Without considering reflection of heat, it is reasonable to estimate the heat flux density
P =~ oe(Ty — T3)

(N.B. You will receive 1 points for this answer)

To get the exact result, we consider the recursive reflection of heat flux between two walls.

11
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Let Q, = AceT, be the initial inward flux and Q; = AceTy be the initial outward flux
without any reflection of heat.

Surface 1 emits Q,
Surface 2 absorbs €Q
Surface 2 reflects (1-€)Q,
Surface 1 absorbs (1—-¢€)eQ,
Surface 1 reflects (1-¢€)20,
Surface 2 absorbs (1 -e)%eQ,
Surface 2 reflects (1-¢€)30,
Surface 1 absorbs (1-¢€)3€Q,

The same is true for the heat emitted from surface 2.

Hence the total heat flux radiated from surface 1 and reabsorbed by surface 1 is

0;=(1—¢€)eQ; + (1 —€)3€Q; + (1 —€)°eQq + -

=(1-€eQ;(1+(1—-€e2?+A-e)*+-)= (1 - e)ed,

T 1-(1-¢)?
Similarly, the total heat flux radiated from surface 2 and reabsorbed by surface 2 is

~ _ (1—-e)eQ,
Q2_1—(1—e)2

And hence the total heat flux radiated from surface 2 and absorbed by surface 1 is

. 1-(1-e)?-(01-¢e) €
Q=02 = = (1= szsz

The net heat flux from surface 1 to surface 2 is

(1—e)eQ, € _oe(T¢ = T3)
TI-(-e? 1-(-e2®%~ 2-¢

P=0Q

(N.B. When € = 1, we have ideal blackbody. The heat will be completely absorbed by the
plates and two results are identical.)

(b)
(1) From the kinetic theory of ideal gas, we know
3kT;

—_3 2 _
> MV —EkT1:>v1 =

As an approximation,

12
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— - kT,
=== W

Remark: To be precise, we can calculate v;, using the Maxwell distribution. Since the
particle can only move in one direction, the Maxwell distribution becomes g(v;,)dv;, =

ZJ:ep(

) dv,, and the mean value of v, is

le f ’anTl eXp 2kT1 ledle \/7 ’

which is different by a factor of order 1.

(i1) Similarly we have

(ii1) Since A >> L, the probability of collision of two molecules is ignorably small, so we can
imagine the molecules as independent ones bouncing back and forth between the plates. We
are now considering a two-way journey of a molecule. Let the velocity of a molecule when
leaving the hot plate be v;, while that when leave the cold plate v,; the component
perpendicular to the plates is v;, and v,, respectively.

: : k k
The net transmitted energy is AE = %mvlz — %mvzz = 37 (T, —T,) = %Tl

(iv) The time required to cover the normal distance L back and forth is
L L
At =—+—.
Vix VU2x
Since T; > T, the velocities satisfy v; > v, and
AE =~ %mvl2 and At ~ =

V2x

The power transmitted (per atom) during this journey is
m
P=J¢ = gL vive

And the heat flux density due to all particles is
Pror = o1 ST ViU X (nN4AL)
where A is the surface area of the plate. The heat ﬂux density is

nN
2 k2 T1T1/2
m

> P =

Since Nym = M and kN, = R, we have

13
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3

P=——T,T.
Zm 1 2
N.B. Any answer of the form
3
nR2
P=C—T;T
\/M 1 2

for some dimensionless number C (of order one) will receive full credits.
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