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All final answers should be written in the answer sheet.
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All detailed answers should be written in the answer book.
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There are 2 problems. Please answer each problem starting on a new page.
28, % 18, JURHBFT—4.

Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering the
questions. No working sheets for rough work will be distributed.
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If the answer book is not enough for your work, you can raise your hand. Extra answer books will be
provided. Your name and examination number should be written on all answer books.
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At the end of the competition, please put the question paper and answer sheet inside the answer book. If
you have extra answer books, they should also be put inside the first answer book.
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Problem 1: Precision measurement of the gravitational constant G (27 points)

R 1. EWE G RBHIE 274

The precision measurement of the gravitational constant G is important because it is a fundamental constant.
Besides, it can play a role in verifying (or disproving) some recent proposed versions of string theory or the
existence of the fifth fundamental force.
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Part A. Estimation of the Gravitational Field Change During the Experiment (15 points)
XF LI 5| 1R EIAE T (154D

Let R and M be the radius and the mass of the Earth, respectively, express the gravitational

field g in terms of R, M, and G, while ignoring the spinning of the Earth. 1 point
Al
W R A M 73 e BRI EAR A R . Mg HIER B8, KRl iy g, HI R, 15y
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In this problem we present a simplified version of the latest method, which can lower the relative error of G
down to 10°. As shown in Fig. 1(a), laser interferometer 1 measures the spacing between the two pendulum
bobs with respect to the reference spacing between the suspension points of the pendulum, which is measured
by laser interferometer 2. When the four source masses are moved from the outer position (shown in Fig. 1(a))
to the inner position (shown in Fig. 1(b)), the pendulum bob separation changes. Not pictured is the vacuum
chamber that encloses the pendulums but not the source masses.
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Figure 1: The setup of apparatus for measuring the gravitational constant precisely, with the source masses placed at (a) outer

positions, (b) inner positions. 7/ 777 £0#g M & 17 5E I FE B, Wi di e T () S0 e, (o) I E -



Figures 2 and 3 show the top and side views of the apparatus. The outer and inner positions of the source
masses, and the pendulum bobs (at the ends of interferometer 1) are located symmetrically with respect to the
center of the vacuum system. The length scales ai, a2, b, d, h and R are shown in the figures.
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Figure 2: Top view of the apparatus. /X747 T 71
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Figure 3: The side view of the apparatus. 7K #7701 # /&

It is very complicated to calculate the gravitational force of the 4 cylindrical source masses acting on pendulum
bob A. Here we approximate each cylinder with uniform density, mass M, radius R and height h to be a thin
wire with uniform density, mass M and height h passing through the axis of the cylinder.
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Figure 4: The X-component of the gravitational field at point P due to a cylindrical source mass is now approximated by that due to
athinwire. 7/-5Z7 P w17/ 7519 X 720, FFIEFETE I ARV L 922 -

You are provided the integral formula:

PRA] DU BN AR 2 3

j dx B X +C
(x2 +a2)3/2 a’Vx? + a? ’

Derive an expression of the X-component of the gravitational field gx at point P due to 3 points
A2 the thin wire. Express your answer in terms of G, M, h, zo, and r. P
VAN
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Consider an element of the plate at position z.
Distance from P = Vr2 + z2. [0.5]

Gravitational field at P = <24 [0.5]
-r -.FZ g Gp dz r
X-component of the gravitational field = Y e [0.5]
Linear density: p = %
Total X-component of the gravitational field
_ GM rh-z, r _GM 1z h-zo . . ] )
9x = f_ZO dz (r2+22)% = o [integral expression 0.5, integration result 0.5]
GM h—ZO Zg -
=— . correct answer 0.5, no penalty for + sign
| T * o [ penalty gn]
Calculate the gravitational field gx at point P when the point is very near the thin wire. 1 point
A3
L P AR GRS, THRESIIIE P 5B X 70 gxe 15
When the point is very near to the thin wire, r approaches 0. Hence
Jx = % [noting that the two terms in the bracket approach 1: 0.5, correct answer 0.5]



Applying Gauss’ law, verify the result in part A3. Write your steps in the answer sheet. 1 point
A4

s
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Total flux of gravitational field:
@ = (i—"f) (4nr?) = 4nGM. [0.5]
Applying Gauss’ law to a cylindrical surface of height Az around the thin wire,

D= 47‘[%AZ = g,(2nrAz).

gx = % [0.5, no penalty for + sign]
You are provided the following parameters:
PRAT A FH BL R 24

G = 6.67 x 101! Nkg?m? M =119.1 kg ar =0.568 m

a2 =0.166 m b=0.262m d=0.34m

h=0.312m Z0 =0.002 m R=0.083m

Using the given parameters, and the thin wire approximation for the 4 cylindrical source
masses, calculate the horizontal component of the gravitational field due to the 4 source
masses at the position of pendulum bob A, when the source masses are located at the inner
A5 | position.

3 points

éj\
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For pendulum bob A, the 2 sources on the left and right in Fig. 3 are at distances

2 2
2= (2-%) 1 (2) = (017 - 0.083)% + 01312 = 0,02473 m?
left 2 2 2 ' ' ! ) ’

2 d a ’ b\’ 2 2 2
Taght = (§+ 7) + (E) = (0.17 + 0.083)? + 0.131 = 0.08117 m?.
[know how to calculate: 0.5, correct substitution: 0.5]

The angles between the components of their gravitational fields and the axis of the interferometer are

d—a, 0.17 — 0.083
COS Ojefr = = = 0.5532,
J(d—ay)?+ (b)2 /(0.17 — 0.083)2 + 0.1312
d+a, 0.17 4+ 0.083
oS Orignt = = (0.8880.

J@d+a)2+ (B)? /(017 + 0.083)2 + 0.1312
[know how to calculate: 0.5, correct substitution: 0.5]

Hence the gravitational field along the interferometer axis due to the left source masses



(6.67 x 10711)(119.1) 0.31 0.002
Giere = (2) ( + )(0.5532)
(0.312)1v/0.02473 \W0.02473 + 0.312 +0.02473 + 0.0022
= 1.6204 x 10~7 ms~2.
(6.67 x 10711)(119.1) 0.31 0.002
Grign: = @) ( + ) (0.8830)
(0.312)10.08117 \1/0.08117 + 0.312 +/0.08117 + 0.0022

=1.1798 X 1077 ms™2,

Total gravitational field (in the rightward direction): geotar = Giepe + Grigne = 2.8002 x 1077 ms ™2,
[know how to calculate and sum the two: 0.5, correct substitution: 0.5]

Similar to part A5, calculate the horizontal component of the total gravitational field at the
position of pendulum bob A, when the source masses are located at the outer position. 3 points

34

A6
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For pendulum bob A, the 2 sources on the left and right in Fig. 3 are at distances

a d 2 2
leeft = (?1 — E) + (E) = (0.284 — 0.17)%> + 0.131% = 0.03016 m?,
» a, d b 5 ) ,
Tright = (7+ E) + (E) = (0.284 + 0.17)% + 0.131% = 0.02233 m*“.

[know how to calculate: 0.5, correct substitution: 0.5]
The angles between the components of their gravitational fields and the axis of the interferometer are

a, —d 0.284 — 0.17

J@ —d)? + ()2 /(0.284— 0.17)2 + 0.1312
a +d 0.284 + 0.17

J@a + 2+ (b2  /(0.284 + 0.17)2 + 0.1312
[know how to calculate: 0.5, correct substitution: 0.5]

= 0.6565,

cos Ojppr =

= 0.9608.

oS Orignt =

Hence the gravitational field along the interferometer axis due to the left source masses

(6.67 x 10711)(119.1) 0.31 0.002
Jiese = (2) ( + )(0.6565)
(0.312)+/0.03016  \W/0.03016 + 0.312 +/0.03016 + 0.0022
= 1.7016 x 107 ms 2.
(6.67 x 10711)(119.1) 0.31 0.002
Grigne = () ( ' ) (0.9608)
(0.312)4/0.02233  \V0.02233 + 0.312  v/0.02233 + 0.0022

= 5.7237 x 1077 ms 2.

Total gravitational field (in the leftward direction): giotar = Giert — Grigne = 1.1292 x 1077 ms 2.
[know how to calculate and subtract: 0.5, correct substitution: 0.5]



Calculate the change Agx of the horizontal component of the gravitational field at the
position of pendulum bob A, when the source masses are moved from the outer position | 1 point
AT | to the inner position.

A EIFMSMIGLERS BIN AL E, T 53R A 45 /137K 10 B AR Agx.

Change in the horizontal component of the gravitational field
=2.8002 x 1077 +1.1292 x 1077 = 3.9294 x 1077 ms~2.
[know how to add the answers of A5 and A6: 0.5, correct answer: 0.5]

In this experiment, care has to be taken to monitor the uncertainties of measurements. Since the calculation is
complicated, we will simply focus on the expression derived in Part A3. Consider the case that all mass
measurements have an uncertainty of 0.6 parts in 10°, and all dimension measurements have an uncertainty of
1.4 parts in 10°.

R FFEANOE RS R T . ERITHEILERIR, N TR, FAMEE A3 #i S RE A
B AT A ot Sl B R 2238 0.6 x 107°, A KM SR RZE N 1.4 x 1073,

Remark: The uncertainty of a physical quantity f(xi, Xz, ...) is given by the standard deviation of f divided by
2
f, that is, / o} /f? where xy, Xz, ... are independent measurements and of is calculated from of = (a—f) o +

6x1
a 2
(_f) 0-22 + .-

6x2

VE: WU f(, Xe, . OIREEN FIORRHEZERRLL A Sr, B [02/F2, JErfxy, Xe, .. ST DI
&, of UM of = (a—f)z o2 + (af>2 02 + e T

9xq E
Calculate the uncertainty of gx in Part A3. 2 points
A8
THE A3 E 7t gx IR 25

. (2G\ 2GM\* 2GM\*
i =) i+ () o+ ()

2
0,
+ T—TZ = (0.6 X 1075)2 + (1.4 x 1075)% + (1.4 X 1075)%2 = 4.28 x 10710,

Og, / -5
g— =4/4.28%x 10710 =21 x 10"">.

X
[correct formula 1, correct answer 1]
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%, _ %, O
gz M2 R

Part B. Measurement of the Gravitational Field Change During the Experiment (15 points)#l| & sEL:
H 5 7135 (1540

In Part A we estimated the gravitational field change when the source masses are moved from the outer to the
inner position, assuming a certain value of the gravitational constant G. In this part we investigate how the
gravitational field change can be measured experimentally, such that the gravitational constant G can be
calculated. We let:



Ax = the horizontal displacement of the pendulum bob A when the source masses are moved from the outer to
the inner position,

= the angular frequency of the natural oscillations of the pendulum baob,

m = mass of the pendulum bob.

fE Part A, FATMB B 4e 2 51 J1H AL G, S TR IR A SMIUES 2N NI 51 7737 22 . AER 70,
ARSI FE o £E S50 R R 5 /137 I e, BRI [A eI & 51 A G Bl e =

AX = RO MURS B R, SR A 7K 1 0 (s B
o= H38 H AR FFF,
m = 4R ]

Derive the expression of the change Agx in the horizontal component of the gravitational
field at the position of pendulum bob A, when the source masses are moved from the

outer position to the inner position. Express the result in terms of the 3 variables above. 1 point

Bl

P

LM AU EI P, SRAZEE A K3 D BT BIOBCE Agee FIMLE=A| 1
BERTER.

Ax
Ag, = gtanf ~ g@ =gT=w2Ax.

[correct steps 0.5, correct answer 0.5]

The pendulum bobs are hung from the supporting bar at a distance | = 0.738 m vertically below the bar. The
gravitational acceleration is g = 9.8 ms™.

PR TR E&H ok, SERHMNEEEEN1=0.738m. 51 JH#EEZ g=9.8ms?.

Using your result in part A7, calculate the change in the separation of the pendulum bobs. | 1 point
B2

M AT B R, TR E AR E . 1

s

Ax
Ag, = gT

3.9294 x 1077

9.8
[correct steps 0.5, correct answer 0.5]

A
Ax = z% - (O.738)<

) = 29.5912 nm.

There are corrections to the answer in B2 because besides the pendulum motion, there are other contributions
to «f such as the flexing of the wires. The frequencies were found to be (0.589 8171 + 0.000 0023) Hz for one
bob and (0.589 7069 + 0.000 0013) Hz for the other, where the number following the plus-minus sign is the
standard derivation of the quantity.



2

B2 HHIERIEEAMARKRIE, KA T BBEsizib, 0FLEREW P, FIaniELr s, Xt
—ANEAE, SR EE A (0.589 8171 + 0.000 0023) Hz, X% —AN34E, iR Al &E{E N (0.589
7069 + 0.000 0013) Hz, ikt 5 51 F 37 iz s KIbaiE 2

Calculate the mean and the uncertainty of the average value of the pendulum frequency. | 2 points
B3
THREPRIUR R ME, DRI B E IR 22 25
Mean:
%(0.589 8171 + 0.589 7069) = 0.589 7620 Hz. [1]

Uncertainty:

\/%(0.000 0023)2+%(0.000 0013)2

=2.2x107C. [1]
0.589 7620

If the error of time measurement is 107 s, determine the number of periods to be measured

such that the uncertainty of the measured period is 107" 1 point
B4
TRV I TRl (B IR ZE N 10734, N TIREIRZE08 107 IFHINERSE, KR | 14
LI B Y R SR
Period:
T=—" =16956s. [0.5]
0.589 7620 .
Let n be the number of periods. Then
2 _ 107,
nT <
10~
n=—=-=>59. [0.5]

In practice, the pendulum was swung over several hours of measurement to check whether the pendulums are
stable, and repeated over the course of several months.

The horizontal displacement of the pendulum bobs can be measured with high precision using the laser
interferometer (commonly known as Fabry-Pérot interferometer). The cavity of the interferometer is formed
by two highly reflective mirrors separated at a distance d = 0.34 m so that the laser team traveling between
them forms a standing wave. The laser wavelength is 633 nm. When the spectrum is closely examined, one
finds that it consists of a sequence of peaks as shown in Fig. 5.

FRAR I 7KTALA% AT PUE I HOE T Q2AT B3 2 000 S0l T30 B8 i w5 20 55 78
T YU RBUREIEL . B A AR d =0.34 m. WORTER S A 2 IR GRS . OB K 633
nm. WIS Fs, TR i — R .
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Figure 5: A sketch of the close-up of the spectrum of the interferometer. 3545 i () 4 35 45 F s s

Calculate the frequency separation of the neighboring peaks in the spectrum. Then 2 points
B5 calculate the wavelength separation of the neighboring peaks in the spectrum. P
AN
TGS AR I A IR 22, IR ROGTE HAR &R I I [A) R K 22 27

The peaks correspond to different modes of standing waves. Neighboring peaks correspond to standing waves
differing in their traveling time back and forth the interferometer by one period. Hence the frequency separation
of the neighboring peaks is given by

c _ 3x108

Af =<

2L 068

= 441 MHz. [1]

Wavelength separation:

(633x1079)°

A A2
Ar = ;Af - 7Af ~ 3x108

(4.41 x 108) = 5.89 X 10™* nm. [1]

The width of the fringes in Fig. 5 is about 100 kHz.
K5, ZREUTE 40N 100kHZ,

Assuming that the major mechanism of power loss of the standing wave is the
transmission through the mirrors, estimate the fraction of power loss from the 2 voint
56 interferometer per transmission. poInts
AR Ny PN == N 7. N VI, Ly = Lo S VAN
BRI b B O Al RO T B T . B R RE k| 2
REZE Y HLAI
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When there is no input power, the time taken by the phase angle of the standing wave mode to spread out over
a range of 2z completely is
1

(2m)(100x103)° [1]
Time for the standing wave to travel between successive transmission is

L 0.34

¢ 3x108 ] o

Hence the fraction of power loss per transmission is

(522 (2m)(100 x 10%) = 7 x 107*. [1]

Remark: Answers without the factor of 27 are acceptable. In that case the answer will be 1 x 1074,

Suppose the Ieng'gh of the interferometer changes by 1 nm. Calculate the corresponding 2 points
B7 change in the cavity frequency.
A BB 1nm, SRR F o5 5 A B 2R 293
The nth harmonic of the cavity frequency is given by e
f=5r

Hence the change in the cavity frequency is given by

SL 3 x 108 1x107°
8f = ~f+ =\ m3x10 ) (o3| = ~1:3939 MHz.

[correct equation of 6f: 1, correct answer 1]

When the source masses are moved from the outer to the inner position, the beat frequency of the cavity
frequencies of the two interferometers changes by 125 MHz.

2 o E R MRS B A, PSSO AR R SR R M2 7 125 MHz.

Calculate the change in the separation of the pendulum bobs. (Remark: This result will

be different from that in B2 due to the approximations made in Part A.) 1 point
% THE MR BE B AR . (W BT Part A AL, EXAE RS B2 17
HIARF. D
Change in the separation: Ax = %22606 = 89.675 nm. [1]
References:

[1] Harold V. Parks and James E. Faller. Simple Pendulum Determination of the Gravitational Constant.
Physical Review Letters 105, 110801 (2010).

[2] Harold V. Parks and James E. Faller. A simple pendulum laser interferometer for determining the
gravitational constant. Philosophical Transactions of the Royal Society A372, 20140024 (2014).
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Problem 2: Physics in Various Dimensions (33 points) 7[Rl 2& B i3 (33 4)

“What had she experienced? She had seen how a cruel attacker could lower the dimensions of space by one
and destroy a solar system. What are dimensions?” -- Cixin LIU, Death’s End (Translation: Ken LIU)

“dhze kA4 ? SRINIE R, O 7 EBCK—AMER R SBR[ 4E R B AR 1 — 4
FIRUESRE, SHLERERAT AT ” —— XNRR (=AK « JEKAD

In this problem, we will explore 4-dimensional space, attack from 4-dimensional to 3-dimensional spaces,
and the motion of celestial bodies in two dimensions. (Note: In this problem, whenever we mention the
number of dimensions, we mean spatial dimensions and did not count in the time dimension. For example,
when we mention 3-dimensional space, we mean the spacetime with 3 space dimensions and 1 time
dimension). The setup of the problem is as follows:

A, FATRAITIR DY 4EAs 8], A DU4ER| = 4R 4eoidy, Dok “4Ead Rk sn .  (F
B AR PEAYERE R BCER, IR TR R 4ET SN . BN, IR =4, FE R
e AR AN b —4EI AL BRI e D B E AR

o Let the mass of the star be M, the mass of the planet be m << M, So in the star-planet problems, the star
can be considered at rest. The change of star position due to planet motion can be neglected.

o Inn-dimensional space, Newtonian gravity can still be derived from Gauss flux law: For any (n-1)-
dimensional closed surface enclosing the point particle M, the gravitational acceleration flux through the
surface is —A,,_1GM, where A,,_; is the area of a (n — 1)-dimensional unit sphere (understood as
generalized area, for example, for n = 2, A; = 2m is length, for n = 3, A, = 4m is area, and for n = 4,
A; = 2m? is volume). The meaning of flux is: for a small area element, the flux is the dot product of the
gravitational acceleration vector and the area vector. For the case when the gravitational acceleration is
normal to the surface, flux is the magnitude of gravitational acceleration times this area. For example, the
figure below illustrates how to derive Newtonian gravity from Gauss flux law for the case of 3 spatial
dimensions.

Yoy
A 44(

wx

——
- -

Newtonian gravity from
Gauss flux law in 3 dimensions:

(flux through spherical surface)
= (F/m) x 4nr? = —A,GM

= F = —GMm/r?

(Note: the Gauss flux law does not apply for general relativity.)

o Newton’s three laws of motion still holds. Momentum conservation and angular momentum conservation
laws still holds. The relativity of motion still holds.

o We approximate the stars and planets as particles, with negligible radius.

o WEEFENM, TEREm KM, METERSERESE Y, EET UM EIE, T2

=
12 B0 B 2 AL E AR AT DL 2
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o fEngEZ(E], ARG R ULl e S s R R E S HOk, B AE TR A M AT n - 1 4E
PR T, % HH e A il T R 5| IR BB S T — A GM, HP Ay 08 (n— 1) 4ERAT BRI
TR CERONT ORI, BlnfEn = 21600 T Ay = 2n AKJE, n=3 150 T A, = 4n VM

*/D\’ n=4% ‘r%s‘/ﬂ»‘FA3 = Zﬂzy‘j'fZ'K*/E{) o

RN SR AN, RS IR R E

IR AT TG, X 5| Jyhnid B 3 BT AR eI 00, IR N 51 i /)R 3 AT AL e 1 T

o B, NEF, X =4iaslE], BATH RG] BE e 4HE T 1A T E R

W AAL L,
i

2N AT, —pespemsrzEE
_____ ERRSAE TR

(FEKEMSIAMRERE)
= (F/m) X 4nr? = —A,GM

= F =—-GMm/r?

QER: miiEEE G SRR, )

o =ML, SRR, MR EER ML, B3 A PR
o P ERMINM A, HAAREW /N, ATLLR,

Part A. High-Dimensional World (13 points) F e 5+ (13 4)

In the whole part A, we consider Newtonian gravity in n-dimensional (n > 4) space. Considering that the
gravitational acceleration vector is parallel to the position vector, the orbit of the planet is within the 2-
dimensional plane determined by the position and velocity vectors of the planet.

A Part A, FAIHEn (n 2 4) EEEFRFWE . BT nEE S ERERL, T2
FEl SR L2 RIS St A T-47 B B BR8P SR T VR R 4T T Y

Applying the Gauss flux law to a (n — 1)-dimensional sphere, one can derive the
Newtonian law of gravity in n space dimensions. Due to attraction from the star, the
gravity force exerted on the planet is F = —GMmr® (the direction of the force points
to the star); the gravitational potential energy is V(r) = GMm rf /B, where r is the

AL distance between the star and the planet. Express a, 8 in terms of n. 2 point
Vel EEE R T (n— 1) 458k, w7 DAHES n g2 s i 20 5] 7 5E 29y
. mTRAMEERS], ITEZIINIINF = —GMmr® (JJ8)J51A451A1E
B, SIhBeAVE) = GMmrP g, K r NMITESEENES, Ka,pB
(Hn&xxr) .

Solution:

14



Using Gauss law, the area of a (n — 1) -dimensional sphere is A,_;7™ L. Thus, F = —GMm/r" !, ie. a =
1—n.(1p)

Either integrate F = — Gf—_"f GMm
,

or from dimensional analysis, we get § =2 —n,i.e.V = By (1p)

The Kepler’s second law in n dimensions is: L = mr#¢ is a constant (where ¢ is the
angle between the planet-star plane and the x-axis of the motion plane, ¢ = d¢/dt).

Find A. 1 point

A2

n QEMIFEEIEE RN L =mrto NEE (o HITR-ERERSHIEZ) P e

) x 2 RIS, @ =de/dt) o 3R 4.

Solution:

A = 2, same as the 3-dimensional case, since the motion is restricted in 2-dimensional plane.

Calculate the speed of the planet along the radius direction 7 = dr/dt. Express your
result using n,r,G, M, m,E, L, where E is the energy of the planet (including Kinetic

energy and gravitational potential energy). 3 points

A3

RAT R WG EE 7 = dr/de, F e G M mE L &5, b E e | 57
CBERRERIE] A -

Solution:

Kinetic energy Ex has two parts (perpendicular to each-other): along r direction and along ¢ direction. Thus,
B = %mr’2 + %mr2 $2. (1p)

Using Kepler’s law to replace ¢ by L: Ex =

Energy conservation: E = Ex + V (0.5p)

. e 25 26M
Solve 7 from above: 7 = + \/ e m2r2 (1p) #)

(If only plus sign is given in above =+, deduct 0.5p.)

Give the conditions for the planet to form a circular orbit (give algebraic equations using 2 points

Ad .
n,r,G, M, m,E, L, no need to solve these equations). 2 4y
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m, ANETTRED o

Solution: The two necessary conditions for circular orbit are:

2GM L?

(1) #=0(0.5p), ie. =+ — ——=0(0.5p) (*)

(n-2)rn=2  m?2

(2) # = 0 (or equivalently gravitational force balance centripetal acceleration) (0.5p),

i.e.

GM L?

= 0(0.5p) (%)

I )

A5

For n = 4, when the values of r, G, M, m, E, L are such that a circular orbit is
possible, and r is varied while other parameters are fixed, can the planet

(1) form elliptical orbits?

(2) move from finite r to r - 0?

(3) move from finite r to r — 0?

Yn=4, FFHr GMmE,LBUEESATEA AR ESIER, [bEHE
ZH0m r BURFIERE, TR R EE AR

(1) TE A R i

(2) NERK) r 313 r - o

(3) ME IR rizsh % r - 0

1.5
points

154

Solution:

For n = 4: equations (*) and (**) implies E = 0. Then a solution for one r is a solution for all values of r.
Thus, for any r, we have circular orbit 7 = 0. Thus, all (1), (2), (3) are impossible. (0.5p each)

A6

For n > 4, when the values of n,r, G, M, m, E, L are such that circular orbit is possible,
and r is varied while other parameters are fixed, can the planet

(1) form elliptical orbits?

(2) move from finite r to r —» ?

(3) move from finite r to r — 0?

For the possible cases in the above questions, please state the possible range of r given
n,r,G,M, m,E, L are fixed. (If the limit of the range is one of the roots of an algebraic
equation, please specify which root without the need to solve the equation explicitly.)

1n>4, FHnr G MmE, LWEEMEEIT 2GR REIE IR PUER, [HxHE
SZHM r BASF AR, TR 2 5A R

3.5 points

354
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(1) T2 HAM [ i
() NHIRI r i83h 3] r -
() NAIRI riB83hE r - 0

XFF BT EZ T RERIE DL, 16 nr, G, M, m, E, L BB T, Wi r FEUE
VaHl G r BUE S R FOVREOT RN — MR, 15 1R IR, (BN
AT )

Solution:
For n > 4: equations (*) and (**) implies E > 0. (0.5 p)
For (#) to make sense (positivity under the square root), we need (0.5p)

2E 2GM L?
—+ — — >0
m (n—2)r"2 m2r2

The solutions of this inequality can be studied by letting x = iz and plot & compare the functions
r

2
2™ (=2)/2 gng Loy — % (0.5p).

n-—2 m?2
The result is:
2GM n-z
. . 2E 26M 12 n-z""
There are two positive r solutions of —+ Py 0 (0.5p). Let us mpos‘i“’f
denote them by 7,7, (r; < 13). Then ' ﬁl@/‘ 2 1
= Tmtm
(1) is impossible. (0.5p)
x=1/r?

(2) Condition for (2) is r < r;. (0.5p)
(3) Condition for (3) is r > ;. (0.5p)
Part B. Dimensional attacks in Newtonian gravity (5 points) Z£8 5[ 77 T~ RIEEFTHF 5 7))

Suppose aliens living in 4 spatial dimensions perform dimensional attack on enemies also living in 4 spatial
dimensions. The way of dimensional reduction is to reduce one space dimension into a small circle with
circumference length C. In this way, in fact, there are still 4 spatial dimensions. But for small C values,
seeing from far away, one cannot see the dimension of the small circle. As a result, seeing from far away, the
enemies appear to be living in 3 spatial dimensions. We call such spatial regions under dimensional attack
having “effectively” three spatial dimensions.

(B U 2 2 [ o B8 2 40 ) (R R A 3 A DU A BT SR T oy o BRAER T2, KA () e P 4
IR C RN IXRE, HSRAsRIEa 4. H2 C IR/, MZEKR, FHAZIXAE

17



MARRIIYESE . X0, MIZALF R, EOTIFR A TEAE =425 1] — . FRATIARIX I 1 32 48 T i i
A “H R Y=Yk

As illustrated in the below figure, suppose the vertical dimension is the dimension under dimensional attack.
The horizontal plane denotes the remaining three-dimensional space. Before the dimensional attack, the four-
dimensional space can be considered as, in a three-dimensional space, on every point there is one straight line
indicating the fourth dimension. After the dimensional attack, on every point there is a small circle with
circumference C indicating the fourth dimension. The circle indicates that the top and bottom endpoints of an
interval are glued.

n N B, ARBEEE LT A E N S 4E ST (AR, KT T T AR T AR K =4 A] . 4ERL
T T, D4y DA i = 4E2s (a0 R4 B — SR ELE R B DU 4E . 4E8dT i e, =485
AR B — AR C BN U YE . BIFAIE SORE— 2 R B N P AN i UK
K

Make the 4th Glue top and bottom
dimension shor (identify)
HE S 3 ﬁtﬁﬁTﬁ

Een)

Assume that during the dimensional attack (assume the duration is short enough), apart from the sudden
change of the law of gravity, a system under dimensional attack does not have additional forces exerting on
it. The momentum in the 4-dimensional point of view does not change. The law of gravity can be understood
in two ways: the effectively three-dimensional gravity and the more fundamental four-dimensional gravity.
The values of a gravitational force computed using these two methods (using Gauss flux law) agree with each
other.

BAELE T drd A rh (BB R Rp e 8] 2 98 J) B 1 5 e e R AR SN, 3T
HIRGEAZEINIIIVE, D4R A IR AR 5] J1E 2 4 FE T R M AR D 4T i s
LRI B AR 51 77, A3 R0 =4k 5| TR SE AR DL S] 77, 38 ey e R 3K A A S B
151 J KN o

Consider a point particle at rest, which exerts Newtonian gravity upon other objects
(whose distance is much greater than C). Find the relation between the four-dimensional
Newtonian gravitational constant G, and the effective three-dimensional Newtonian

gravitational constant G5 (in terms of G, = (function of G3 and other parameters)). 3 points

Bl
AL s ek (FEEim KT ¢ PAAERAEE] . SRI4Ed 39
Wi 5| 1 G, =4 A5 1 G, 2 AR R (G, = (G MEES
BHIRED £ .

Solution:
18



In 4D, note that the new geometry is a cylinder. Now that » > C, the gravitational flux is approximately
perpendicular to the circle (with perimeter C). The corresponding Gauss’s Law is 4wr?C F = —2mw?G,Mm.

(1p)

Compared with the 3D gravitational force is F = —G;Mm/r? (note: this 1p is given to realizing 4D force =

3D force, not knowing the 3D Newtonian gravity formula), we get G, = % G5. (1p)

[If the student guess G, o« CG5 with wrong proportional constant without reasons, give 1p.]

B2

Suppose the relativistic mass-energy relation E? = |p|?c? + m?c* applies both for three
and four dimensions. Here ¢ denotes the speed of light. Suppose before the dimensional
attack, a point particle with mass m has momentum p = (py, P2, P3, P4). After
dimensional attack, the 4" dimension (corresponding to the subscript 4 above) becomes
a small circle. Calculate the three-dimensional effective mass of the point particle after
the dimensional attack.

RRARR SR HE S5 5 B2 = |p|2c? + m2c (E S HERMDUAERERAT, Horh ¢ ek,
VBT 20, —AREA m EA R p = (01, P2 D pa), HEFET
J. SPUANAR G G R AR 4) A EUNEIRE, SR AT TR I =
o7 ] o 97 2057 B

1 point

14y

2
Solution: meg = [m? + 2% (1p)

B3

Suppose a planet (with mass m) is moving along circular orbit in 4 space dimensions,
with the star (with mass M) at the center. The distance between the planet and the star is
r. Now dimensional attack this system along a direction perpendicular to the plane of
planet motion. Calculate the energy of the planet after the dimensional attack
(gravitational potential energy plus kinetic energy in the three-dimensional effective
point of view).

BitE Ny m AT B A NZE A URISUES B8 M BRIz, SEEHEEN
ro DUXT R R EAT RIS P T BT 4 T SRYEEE T iR, = 4EAsE]
HATERERER (4R R0 NEISI I3 aenante) .

1 point

15

Solution:

Since gravity is much stronger in 3D, the three-dimensional energy is dominated by its potential energy
— 227 (1p)

It is also correct if more details are given (still 1p):

19




Before the dimensional attack, in 4D:

2
Spherical orbit: Cap G,Mm.
m

2
The dimensional attack relates G, = % G5. Thus, L; = 2CGMm

T

GzMm CGzMm

T mr?

The 3-dimensional energy is E =

Remark: However, considering that G receives O (C /r) corrections, this form is not much more precise than
Gng
E~ —2T7
T

Part C. The Two-Dimensional Newtonian World (4 points) —4E4- it 5 (4 43)
We further reduce spatial dimensions and consider Newtonian gravity in two dimensions (n = 2).

HATRE— DA SRR, FRE e (n = 2) FERFEFEE] 77,

Provide formulas for the Newtonian gravitational force law and the corresponding 1 point
c1 gravitational potential energy in two dimensional. P
N Y 4 1
SR BT 5 A1 AR S AR 4
Solution:
F = -2 (05p)
V =GMmlogr/ry orV = GMmlogr (0.5p)
Provide relations for planets to move along circular orbits around the star (give algebraic
equations in terms of r,G, M, m, E, L. You don’t need to solve the equation). 1 point
C2
RAT B G BIRRIEIZ N T A % (G HRT r, G, M, m E, L FIARET R RD 14y
A, AT .
Solution:
2E_ 2GM (logr + const) — —— = 0 (0.5
—~ (logr + const) e (0.5p)

(Note, here a constant is introduced to make the solution more general. The students don’t have to include the
constant in their answer to get this 0.5p)

20




S _ L (05p)

T m2r2

When the values of r, G, M, m, E, L are such that circular orbit is possible, and r is varied
while other parameters are fixed, can the planet

(1) move inabounded ranger; <r <r,,where0 <r; <1, < oo

(2) move from finite r to r —» ?

(3) move from finite r to r - 0?

Just answer possible or impossible for the above three questions (may need to discuss

different cases for different parameter choices). 2 point
C3

Y1, G, M, m, E, L (AT A TR RIS, [ e s r ik | 29

[F AR, AT ARG A R

Q) WBAEARE r <r <n, X[HNIZ), HF0<r <r<ox

) VBRI ri23h%E] r > oo

() NEIRM riZ2sh®] r - 0

R L=, S AR RE A RERI T (AT A SRR 2 O A )
Solution:

(1) Possible. Because both (2) and (3) are impossible. (1) must be possible. (Note: however, the orbit does
not close to an ellipse, which needs a longer proof and is beyond the scope of this question. For those
interested, one can search for Laplace-Runge-Lenz vector.) (0.5p)

2

L o o
—— = 0 coincide,

m2r

However, there is one exception: if the two solutions of % — 2GM (logr + const) —
then r; = r, , which does not leave room for the condition 0 < r; < r, < o (0.5p)

(2) The gravitational potential is infinitely deep. Thus, for any finite E, (2) is impossible. (0.5p)

(3) Impossible. Existence of spherical orbit = L # 0. Thus near r — 0,1 is imaginary, no physical meaning.
Alternative but much more complicated explanation: repeat analysis similar to A4-A6, you will get the same
conclusion that you cannot reach r — 0. (0.5p)

Part D. The Two-Dimensional Einstein World (11 points) — %3 B #E # 5 (11 43)

Interestingly, in the two-dimensional case, the “gravitational” law in Einstein’s general relativity is even
simpler than Newtonian gravity. In general relativity, there is no gravitational force at all between massive
point particles (the space outside the particles is not curved either). Instead, the only gravitational effect of a
point mass is that the space around it becomes conical (like a cone).

GRS, T ESEEOT, ZRET SCHRX e TR “ 51707 MU L RS ] e E R . T X
XS, YRR 2 AR B A IR 5 77 Ot RS e B s ) o il R A

RN, Ao A L) 22 B O [ HE A
21




In the conical two-dimensional world, free particles and light will move along straight lines. Here straight
lines are understood in the following way: if we cut the cone along a ray starting from the top vertex (not
intersecting with the motion trajectory), and lay it on the plane as a circular sector, the motion trajectory is a
straight line on the sector. For example, the lines AB and CD in the figure below.

IR R i Frh, B R T ADC LRI E IS8 X R ELEM Y, KRN EERE 5
MR R S HUB AR BT, IRl BT sov it e, ealfuldmt LR E
2. Bl N B ELZ AB, CD.

When we cut the cone into a sector, there is a deficit angle (the angle that a sector lacks compared to a disk),
denoted by § as illustrated in the figure below. This deficit angle is proportional to the mass M of the point
particle. Here we assume § < .

CRHETIT RN, RIS BE AR RTsR A CREITRR 6 FONBIHERISRIE /1, 55 AR UE
M SIE . AR S < 7.

cut along
dashed line

D
IR

D1

Point P is moving along a circle surrounding point M (M is the center of the sector in
the figure below). The angle between the observer-M line and the MP line (viewed
anti-clockwise) is 6. Depending on different values of 6, sometimes the observer finds
a single image of P and sometimes finds double images of P. For example, in the figure
below, the observer can observe double images along the dashed lines. Find the
condition for the observer to observe double images, and the angle between these two
images (the angle between the two dashed lines in the figure).

A1 P S A M R FIE ) (M El
L) o W LE R~ B AL P AR 3.
WIE 5 ML S MP L, GRIBNE S s i
) AN 0. b 0 BUERF, W HH
FHIP Mg, HMAEBWG. Hlt i, L

2 points

245
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Solution:

(1) When T — § < 6 < m double images, otherwise single image (1p)

B=27-0-§

S
i+, ==

(2) Angle between the two images: the angle is §/2 (1p)

(A simpler observation is to use the inscribed angle theorem and get § /2 directly for this 1p.)

At t = 0, apoint particle with mass M (with corresponding deficit angle &) moves towards

observers P and Q. The direction of motion is perpendicular to the PQ interval, and the

speed is v (much smaller than the speed of light). The mass of P and Q are negligible. At

the initial time t = 0, P and Q are at rest, distances MP = MQ, PQ = 2d, the distance

between M and the PQ interval is s. Calculate the time t,,, when P and Q meet.

2 points

D2 | iy M O N FEGRIE 6) H i s [ A

R AR Py Q B, BV Poyyym| 2%

RET PQ %Lk, EXHv GEAT M @——2 2d pie

) o fEVIMERZ) t = 0K, P Q H ik, £

B MP=MQ, PQ=2d, M5 PQ %% Q E OB A

So K P. Q PULINE AHIE KN TA] ¢,
Solution:
Though not necessary, it’s convenient to work in the frame where M is static, and
P&Q are moving. Note that the deficit angle can be drawn facing any dc:i% S ‘"; angle (in
the above examples we have drawn it facing forward, but it can also be 5 M"‘l drawn
facing backward). This is not necessary either, though it will simplify the ZQ discussion.

This setup or an equivalent figure deserves 1p.

The meeting time is thus ¢,,, = [s + d cot (g)] /v (1p).

23




Consider the same setup as Problem D2. The observer P (starting from early enough
time) continuously emits sound wave towards all directions. The source of sound has

cZ—v? c056

vibration frequency f. The speed of sound is c; satisfying — (use this

—p2
relation to eliminate ¢, from the result), and the Wavelength of sound is much smaller
than s and d. The media to propagate sound moves together with M (i.e. at rest with
respect to M).

4 points
D3 | Shortly before P and Q meet, the sound frequency that Q hears is f,. . Calculate f,.

44y
E55 D2 @AEBE N, Wil P OB EE I 4E ) Frst i Arg 7 1 & H

P, FEIRMARENIAER N £, 7O B csiﬁﬁ/@wzﬁ CFH = R pE s

12

R E ¢ FEEPBKZENT s M d. F/EZE’J%T% JiERBE T M iz (R
5 MAER I .

£ P A1 Q RURAAHIE T, QWr BIMA HHRLE fro K fro

Solution:

This is a Doppler effect problem. However, since both the emitter and the receiver move with respect to the
media with an angle, we need to derive the corresponding formula instead of using the 1-dimensional
Doppler formula.

Let the sound wave emission time be t,, reception time be t,. (which equals to t as given in the question). Let
L(t) = v(t,, — t) be the distance of P (or Q) from their meeting point, as a function of t. See figure below:
(Look at the black lines now. The blue lines are for Problem D4.)

From the cosine theorem: L2(t,) + L2(t,) — 2L(t,)L(t,) cos 8 = c2(t, — t,)? -- (*). (1p)
We can do two things from equation (*).

(@) Find relation between t, and t,. For this purpose, it is convenient to rewrite the LHS of (*) as L?(t,) +
I2(t,) — 2L(t,)L(t,) cos § = (L(t ) — L(t,))? . From Scosd 2 we get

—‘UZ
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L(t.) = 2L(t,). ie. tp = Bty — £,)2 = (3t, — [s+ dcot( )])/2
(1p, we will not use t, below. But the students may get ¢, which also deserves 1p.)

(b) To get the Doppler effect, we need to find relation between small variations §t, and &t,.. Varying
equation (*), noting SL(t) = —vét, we get

8te _ cZ+v?(2—-3cos) _ 3 (1p)
Sty  c2-v2(3-2cos8) 2 P

c2-v? cosé‘ 13

(In the above, we have used 7 = and L(t,) = L(tr) in the last equal sign.)

Finally, the frequency at reception is

Ste 3
fr=5.f=3f-1p)
Alternatively, after getting L(t,) = %L(tr), one may realize that the number of wave periods received is the

same as the number of wave periods emitted, but in 2/3 time. Thus f,. = %f. This is also fully correct.

Note: if the student use 1D formula, i.e. by mistake considered the case where the media moves together with
the middle of the PQ interval, then we give at most 2p out of 4p for the Doppler part: the relative velocity

between the two points P and Q is vy = 2v siné (1p), Corresponding frequency from Doppler effect,

- - CstVrel/2 CstVrel
something like f, = (CS 1]rd/z)f fr = ( )f or f = (C — )f (1p)

Consider the same setup as Problem D3, starting from which time (i.e. find the .

. . 3 points
D4 corresponding t) on, Q starts to hear this frequency f,.?
\ 3

(615 D3 BRI T, EIRHE (TSR © L Q TRANF SIS £ 2 ”

Solution:

For the frequency f, to appear, the sound has to be to the left of M (otherwise there is no deficit angle). This
is illustrated as the blue lines in the above figure. Consider the marginal case that the sound crosses M. (1p)
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The problem then is converted to the geometry problem above:

Given Z/BAD = ZCAD =§/2, and |AB| = L(t,-) = 3]ACJ/2. Then what’s the relation between the lengths
|AC| and |AD|? Draw line CA’ parallel to AB, and intersect the extension of AD at A’. Since Z/CA’D = g,

|A’C| = |AC|. From the relation of similar triangles, |[A’D| = 3|ADJ}/2. Thus, |AA’| = 5|AD|/2. Applying the
cosine theorem:

2 5\2 s s 2
(%L(tr)) + (gd csc 5) — (%L(tr)) (gd csc 5) cosZ = (%L(tr)) 1p)
Solve this equation for L(t,), and apply the relation between L(t,) and t,., we get

s+d cot‘z—S 5d

5d 5d
6.Andthustr— — =

5 . 6 :
2 = 3sin
6coszsm2

L(tr) =

3vsiné

Alternative approach:

1/3 3
Area of ACB = > (E L(tr)> L(t,)sind = ZL(tr)2 sin 4.

Area of ACD = = (2 L(,) (d 6) nd =310t )d
rea o =55 cscy ) sin = 2 L(t-)d.

A fABD—lL(t)(d 6)'6—1L(t)d
rea o =5 L&) (deses ) sino = - L(6)d.

Therefore,

5d
3siné’

3 3 1
ZL(tr)Z sind = ZL(tr)d + EL(tr)d = L(t)=
Using L(t,) = v(t,, — t), we obtain

s+dcot% 5 d
t =

v " 3sindv

26



Note: In reality, although we do not note a danger under dimensional attack to two dimensions, it is still
meaningful to study the physics in two dimensions. For example, in our three-dimensional universe, there
probably exist one-dimensional objects called “cosmic strings”. The cosmic strings in three dimensions are
similar to point particles in two dimensions. Both of them bring a deficit angle to space. The three questions in
Part D corresponds to the three important observable effects of cosmic strings. Searching for cosmic strings
using these three observable effects is an active interdisciplinary research direction between high energy
physics and astronomy.

e BsErh, R RANE B RIPYEEHT o By 4 XS, BT 4R B R A T K.
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