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Pan Pearl River Delta Physics Olympiad 2020 

2020 年泛珠三角及中华名校物理奥林匹克邀请赛 
Sponsored by Institute for Advanced Study, HKUST 

香港科技大学高等研究院赞助 
Simplified Chinese Part-1 (Total 4 Problems, 40 Points) 简体版卷-1（共4题，40分） 

(9:30 am – 12:00 pm, 8 August, 2020) 
 

Please fill in your final answers to all problems on the answer sheet. 
请在答题纸上填上各题的最后答案。 

At the end of the competition, please submit the answer sheet only. Question papers and working sheets 
will not be collected. 
比赛结束时，请只交回答题纸，题目纸和草稿纸将不会收回。 

 
1. [10 points]  
A static insulating container of mass 𝑀 and cylindrical shape is placed in vacuum. One of its ends is closed. 
Initially, an insulating piston of mass 𝑚 and negligible width separates the volume of the container into 
two equal parts. The closed part contains 𝑛  moles of monoatomic ideal gas with molar mass 𝑀!  and 
temperature 𝑇. Assume that the container wall is smooth. 
1. [10 分] 将质量为 𝑀 的圆柱形绝缘容器静止置于真空中。其一端是封闭的。最初，质量 𝑚 和宽

度可忽略的绝缘活塞将容器分成两个相等的部分。封闭部分包含 𝑛 摩尔的单原子理想气体，其温

度为  𝑇，摩尔质量为 𝑀!。假設容器為光滑容器。 

 
(a) [2 points] Assume that the state of gas during its expansion can be approximated by thermal equilibrium 
condition, what is the temperature of the gas 𝑇" when the piston left the container? 
(a) [2 分] 假设气体在膨胀过程中的状态可以通过熱平衡条件来近似，求活塞离开容器时气体的温

度 𝑇" 。 
  
(b) [4 points] At the moment when the piston leaves the container, the gas and the container will move with 
speed 𝑣 and the piston will move with speed 𝑢. Find 𝑣 and 𝑢. 
(b) [4 分] 在活塞离开容器的那一刻，气体和容器将以速率 𝑣 移动，而活塞以速率 𝑢 移动。求 𝑣 和 
𝑢。 
(c) [4 points] When all the gas has left the container, the final speed of the container further changes from 
𝑣 to 𝑣 + 𝑣’. Estimate 𝑣’ using the kinetic theory of gases. Assume that the final speed of the container is 
much less than the thermal speed of the molecules.  
(c) [4 分] 当所有气体都离开容器后，容器的最终速度进一步从 𝑣 变为 𝑣 + 𝑣′。使用气体动力学理

论估算 𝑣’。假设容器的最终速度远小于分子的热速度。 
 
The gas constant is 𝑅. There is no heat exchange between the gas, container and the piston. The change of 
the temperature of the gas, when it leaves the container, can be neglected. The gravitation of the Earth can 
be neglected. 
气体常数为 𝑅。气体、容器和活塞之间没有热交换。气体离开容器后的温度变化可以忽略不计。

可以忽略地球的引力。 
 

!
"
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Solution: 
(a) When the gas expands, there is no heat exchange and the process is adiabatic. We have 

𝑇𝑉#$% = 𝑇"𝑉"
#$% 

where 𝛾 = &!
&"
=

#
$'%
#
$
= (

)
 and 𝑉" = 2𝑉. The final temperature is 

𝑇" = 2$
*
)𝑇 

 
Reference: The validity range of the steady-state adiabatic law 
 
Using the differential form of the first law of thermodynamics, 
 

𝑑𝑈 =
3
2𝑛𝑅𝑑𝑇, 

 
𝑑𝑄 = 0, 

 

𝑑𝑊 = 𝑝𝑑𝑉 +𝑀𝑣𝑑𝑣 +
1
4𝑛𝑀!(𝑣 − 𝑢)(𝑑𝑣 − 𝑑𝑢) + 𝑚𝑢𝑑𝑢. 

 
This yields  
 

3
2𝑛𝑅𝑑𝑇 = −𝑝𝑑𝑉 − =>𝑀 +

1
4𝑛𝑀!? 𝑣 −

1
4𝑛𝑀!𝑢@ 𝑑𝑣 − =>𝑚 +

1
4𝑛𝑀!?𝑢 −

1
4𝑛𝑀!𝑣@ 𝑑𝑢. 

 
Let 𝐴 be the cross-section area of the cylinder. Then in time 𝑑𝑡, 
 

𝑑𝑉 = 𝐴(𝑢 + 𝑣)𝑑𝑡. 
 
Here we have defined 𝑣 in the forward direction, and 𝑢 in the backward direction. Using conservation of 
linear momentum, 
 

>𝑀 +
1
2𝑛𝑀!? 𝑣 = >𝑚 +

1
2𝑛𝑀!? 𝑢. 

 
Expressing 𝑢 and 𝑣 in terms of 𝑉, 
 

𝑢 = C
𝑀 + 12𝑛𝑀!

𝑀 +𝑚 + 𝑛𝑀!
D
1
𝐴	
𝑑𝑉
𝑑𝑡 , 

𝑣 = C
𝑚 + 12𝑛𝑀!

𝑀 +𝑚 + 𝑛𝑀!
D
1
𝐴	
𝑑𝑉
𝑑𝑡 . 

 
Eliminating 𝑢 and 𝑣, and dividing by 𝑑𝑡, we obtain 
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3
2𝑛𝑅

𝑑𝑇
𝑑𝑡 = −𝑝

𝑑𝑉
𝑑𝑡

− F>𝑀 +
1
4𝑛𝑀!? >𝑚 +

1
2𝑛𝑀!?

*

	−
1
2𝑛𝑀! >𝑀 +

1
2𝑛𝑀!? >𝑚 +

1
2𝑛𝑀!?

+ >𝑚 +
1
4𝑛𝑀!? >𝑀 +

1
2𝑛𝑀!?

*

G
1

(𝑀 +𝑚 + 𝑛𝑀!)*
1
𝐴*
𝑑𝑉
𝑑𝑡 	

𝑑*𝑉
𝑑𝑡* . 

 
Using ideal gas law, 
 

3
2
𝑑𝑇
𝑑𝑡 +

𝑇
𝑉
𝑑𝑉
𝑑𝑡 = −

𝜇
𝑛𝑅𝐴*

𝑑𝑉
𝑑𝑡 	

𝑑*𝑉
𝑑𝑡* . 

 
Here we have introduced the reduced mass: 
  

𝜇 = F>𝑀 +
1
4𝑛𝑀!? >𝑚 +

1
2𝑛𝑀!?

*

−
1
2𝑛𝑀! >𝑀 +

1
2𝑛𝑀!? >𝑚 +

1
2𝑛𝑀!?

+ >𝑚 +
1
4𝑛𝑀!? >𝑀 +

1
2𝑛𝑀!?

*

G
1

(𝑀 +𝑚 + 𝑛𝑀!)*
. 

 
Let 𝑥 = 𝑇𝑉

$
#. Then we have 

 
𝑑(𝑥*)
𝑑𝑡 = −

4𝜇
3𝑛𝑅𝐴* 𝑉

*
)
𝑑𝑉
𝑑𝑡 	

𝑑*𝑉
𝑑𝑡* . 

 
Although this equation is difficult to solve analytically, it shows that 𝑇𝑉

$
# is not a constant, that is, the 

steady-state adiabatic law is not applicable. 
 
However, the steady-state adiabatic law is approximately correct if the motion during expansion is 
sufficiently low, since it is proportional to %

+
,-
,.
. In other words, the approximation is valid when the 

momentum of the system is negligible. 
 
 
(b) By the conservation of momentum and energy, 

(𝑀 + 𝑛𝑀!)𝑣 − 𝑚𝑢 = 0 
1
2
(𝑀 + 𝑛𝑀!)𝑣* +

1
2𝑚𝑢

* = −𝛥𝑈 =
3
2𝑛𝑅(𝑇 − 𝑇") 

⇒ 𝑣 = L3 >1 − 2$
*
)?

𝑚𝑛𝑅𝑇
(𝑛𝑀! +𝑀)(𝑚 + 𝑛𝑀! +𝑀)

 

⇒ 𝑢 = L3>1 − 2$
*
)?

(𝑛𝑀! +𝑀)𝑛𝑅𝑇
𝑚(𝑚 + 𝑛𝑀! +𝑀)

 

 
 
In fact, we can consider a more realistic situation. , If the thermal motion of the gas is much larger than 𝑣 
and 𝑢, we can assume that the density of gas 𝜌	is uniform during the expansion. 
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Imagine that we have divided the gas into 𝑁 slices, the mass of each slice is 

Δ𝑚 =
𝑛𝑀!

𝑁  
At time 𝑡, the location of the i-th slice is 

𝑥/ = −𝑣𝑡 +
(𝑢 + 𝑣)𝑡

𝑁 𝑖 
for 𝑖 = 0,1,2, … , 𝑁 − 1. Hence the velocity of the i-th slice is 

⇒ �̇�/ = −𝑣 +
(𝑢 + 𝑣)
𝑁 𝑖 

The total momentum of the gas is 

𝑃012 =TΔ𝑚�̇�/
/

=
𝑛𝑀!

𝑁 T	>−𝑣 +
𝑢 + 𝑣
𝑁 𝑖?

/

= 𝑛𝑀! >−𝑣 +
𝑢 + 𝑣
𝑁* T𝑖?

= 𝑛𝑀! U−𝑣 +
𝑢 + 𝑣
𝑁*

𝑁(𝑁 + 1)
2 V ≈ 𝑛𝑀! >−𝑣 +

𝑢 + 𝑣
2 ? = 𝑛𝑀! X

𝑢 − 𝑣	
2 Y 

 
The total kinetic energy of the gas is, 

𝐸012 =T
1
2Δ𝑚�̇�/

*

/

=
𝑛𝑀!

2𝑁 T	U𝑣* −
2𝑣(𝑢 + 𝑣)

𝑁 𝑖 +
(𝑢 + 𝑣)*

𝑁* 𝑖*V
/

=
𝑛𝑀!

2 U𝑣* −
2𝑣(𝑢 + 𝑣)

𝑁*
𝑁(𝑁 + 1)

2 +
(𝑢 + 𝑣)*

𝑁)
𝑁(𝑁 + 1)(2𝑁 + 1)

6 V

≈
𝑛𝑀!

2 U𝑣* − 𝑣(𝑢 + 𝑣) +
(𝑢 + 𝑣)*

3 V =
𝑛𝑀!

6 (𝑢* − 𝑢𝑣 + 𝑣*) 

 
The conservation of energy and momentum give, (we define 𝛼 = %

*
𝑛𝑀!) 

𝑀𝑣 + 𝛼(𝑣 − 𝑢) − 𝑚𝑢 = 0 
1
2𝑀𝑣

* +
𝛼
3 (𝑢

* − 𝑢𝑣 + 𝑣*) +
1
2𝑚𝑢

* = −𝛥𝑈 =
3
2𝑛𝑅(𝑇 − 𝑇") 

⇒ 𝑣* =
3
2𝑛𝑅𝑇 >1 − 2

$*)? ×
(𝑚 + 𝛼)*

(3𝑀 + 𝛼)(𝑚 + 𝛼)* + (3𝑚 + 2𝛼)(𝑀 + 𝛼)* − 2𝛼(𝑀 + 𝛼)(𝑚 + 𝛼) 

⇒ 𝑢* =
3
2𝑛𝑅𝑇 >1 − 2

$*)? ×
(𝑀 + 𝛼)*

(3𝑀 + 𝛼)(𝑚 + 𝛼)* + (3𝑚 + 2𝛼)(𝑀 + 𝛼)* − 2𝛼(𝑀 + 𝛼)(𝑚 + 𝛼) 

 
 
 
(c) When the piston leaves the container, half of the gas particle will leave the container without any effect. 
And the other half will hit the bottom of the container before leaving the container. Each atom gives the 
container a momentum 

𝛥𝑝 = 2𝑚𝑣3^̂ ^ 
where 𝑚 = 𝑀!/𝑁+ is the mass of each atom. By the kinetic theory, 

!−#$ %$&!

'&
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2𝑚𝑣

*^̂ ^ =
3
2 𝑘𝑇" 

and 
𝑣*^̂ ^ = 3𝑣3*^̂ ^ 

We get 

𝑣3^̂ ^ ≈ L1
3𝑣

*^̂ ^ = L𝑘𝑇"
𝑚  

⇒ 𝛥𝑝 = 2a𝑚𝑘𝑇" 

The total momentum received by the container (due to the half of the gas) is 

𝑝 = >
𝑛𝑁+
2 ?𝛥𝑝 = 𝑛𝑁+a𝑚𝑘𝑇" = 𝑛𝑁+L

𝑀!

𝑁+
𝑅𝑇"
𝑁+

= 𝑛b𝑀!𝑅𝑇" = 2$%/)𝑛b𝑀!𝑅𝑇 

Notice that 𝑛𝑅𝑇 = 𝑁𝑘𝑇 ⇒ 𝑘 = 5
6
𝑅 = 𝑅/𝑁+. And the gain of the velocity is 

𝑣7 =
𝑝
𝑀 = 2$%/)

𝑛b𝑀!𝑅𝑇
𝑀  

 
Alternative solution: 
We first assume p(t) is decaying exponentially with the relaxation time as the time scale. This assumption is valid if 
the gas is allowed to diffuse in space freely, but due to the particular geometry of the cylinder, the gas can only 
diffuse out the cylinder at the end. This significantly modifies the exponential decay of the pressure. 

Without solving the hydrodynamic equations, we adopt the following simplified picture: 

At 𝑡	 = 	0, the gas near the end (𝑥	 = 	𝐿) starts to diffuse out, whereas gases inside the cylinder remains at the 
initial pressure. 

 At 0	 < 	𝑡	 < !
"!"#

, gases within a distance 𝐿	–	𝑣#$%𝑡 starts to diffuse out, whereas gases deeper inside the 

cylinder remains at the initial pressure. The pressure is approximately 

𝑝(𝑥, 𝑡) 	= 	𝑝&			for	𝑥	 < 	𝐿	– 𝑣#$%𝑡,	

𝑝(𝑥, 𝑡) 	= 	𝑝&	𝑒𝑥𝑝 2−
𝑥	– 	𝐿	 +	𝑣#$%𝑡

𝑙
6 	for	𝑥	 > 	𝐿	–	𝑣#$%𝑡,	

where 𝑙 is mean free path of the gas. 

At 𝑡	 > !
"!"#

, even gases near the end wall starts to diffuse out. The pressure is approximately 

𝑝(𝑥, 𝑡) 	= 	𝑝&𝑒𝑥𝑝 2−
𝑥	– 	𝐿	 +	𝑣#$%𝑡

𝑙
6. 

Summarizing, we can write 

𝑝(𝑥, 𝑡) = 	𝑝&min <1, 𝑒𝑥𝑝 2−
𝑥	– 	𝐿	 +	𝑣#$%𝑡

𝑙
6>. 

The result is summarized in the following figure, where time is scaled in units of 𝐿/𝑣#$%. For illustration, we have 
used !

'
= 	10, which is exaggerated. 
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Now we can focus on the pressure on the wall. The pressure is effectively unchanged before the time !
"!"#

  , and 

exponentially decay afterwards. At 𝑥	 = 	0, 

𝑝(0, 𝑡) = 	𝑝&				for	𝑡	 <
𝐿

𝑣#$%
,	

𝑝(0, 𝑡) = 	𝑝&𝑒𝑥𝑝 2
𝐿	 −	𝑣#$%𝑡

𝑙
6 				for	𝑡	 >

𝐿
𝑣#$%

.	

Hence the total momentum transfer to the wall is 

Δ𝑝	 = 	𝐴	𝑝& B
𝐿

𝑣#$%
C + 𝐴𝑝&D 	𝑒𝑥𝑝 B−

𝑡
𝜏C
	𝑑𝑡

(

)
, 

 where 𝜏 = '
"!"#

 is the relaxation time. The result is 

Δ𝑝 = 𝐴𝑝&
𝐿

𝑣#$%
	+ 	𝐴𝑝&𝜏.														[1] 

The first term is the result of kinetic theory, whereas the second term is due to the period of unchanged pressure. 
For	𝐿	 >> 𝑙, the first term is most important.  

Interpretation of the second term 
In eqtn [1], the physics of the first was originated from the kinetic theory of the molecules, which is valid 
at low density. The second term can be interpreted in the following way. 
 
At higher density, a hydrodynamic model of the molecules is required. The mean free path 𝑙  of the 
molecules is given by the condition 

𝜌𝜋𝐷*𝑙 = 1. 
Here 𝜌 = 𝑛𝑁+/𝑉" is the number density of the molecules. 𝑁+ is the Avogadro’s number. Hence 

𝑙 =
𝑉"

𝜋𝐷*𝑁+𝑛
. 

 
The average speed of the molecules is given by 

b〈𝑣*〉 = L
3𝑘8𝑇"
𝑚!

= L
3𝑅𝑇"
𝑀!

. 

 
Hence the relaxation time of gas density is given by 



 

 7 

1 

𝜏 =
𝑙

b〈𝑣*〉
=

𝑉"
𝜋𝐷*𝑁+𝑛

L
𝑀!

3𝑅𝑇"
. 

 
The momentum change of the container is given by the impulse, which is the integration of the force and 
the time. Hence the momentum change Δ𝑝 is given by 

Δ𝑝 = 𝐴𝑝"𝜏 =
𝐴𝑝"𝑉"
𝜋𝐷*𝑁+𝑛

L
𝑀!

3𝑅𝑇"
. 

Using ideal gas law, 𝑝"𝑉" = 𝑛𝑅𝑇" , 

Δ𝑝 = 𝐴𝑝"𝜏 =
𝐴

𝜋𝐷*𝑁+
b𝑀!𝑅𝑇

3
%
*2

%
)
. 

And the change of the velocity is 

𝑣7 =
𝐴

𝜋𝐷*𝑁+
b𝑀!𝑅𝑇
3%/*2%/)𝑀 

 
 
 
2. [10 points] A spherical dust particle falls from rest through a water mist cloud of uniform density. The 
initial mass and radius of the spherical dust is 𝑀! and 𝑅! respectively. The rate of accretion onto the droplet 
is equal to the volume of the mist cloud swept out by the droplet per unit time. Let 𝜌 be the density of water 
mist and 𝑔 be the gravitational acceleration. 
We assume the density of water mist 𝜌 does not change after accretion and ignore air friction other than 
that from accretion. 
2. [10 分] 球形尘埃粒子从静止的地方通过均匀密度的水雾云落下。球形尘埃的初始质量和半径分

别为𝑀! 和𝑅!。液滴上的吸积率等于每单位时间被液滴扫出的雾状云的体积。设 𝜌 为水雾的密度，

𝑔 为重力加速度。 
我们假设水雾的密度	𝜌 在吸积后没有变化，也忽略除吸积过程以外的空气摩擦。 
 
(a) [2 points] Let 𝑀(𝑡) and 𝑅(𝑡) be the mass and radius of the droplet at time 𝑡  respectively. Find a 
relationship between ,9

,.
 and ,:

,.
. 

(a) [2 分] 设 𝑀(𝑡) 和 𝑅(𝑡) 分别为液滴在时间	𝑡 的质量和半径。求 ,9
,.

 和,:
,.

 之间的关系。 
 
(b) [2 points] Find the speed of the droplet at time 𝑡. Express the answer in term of 𝜌, 𝑅 and �̇�. 
(b) [2 分] 求在时间 𝑡 的液滴速度。用 𝜌, 𝑅 和	Ṙ 表示答案。 
 
(c) [3 points] After a long time, the radius of the droplet increases with time as 𝑅(𝑡) = 𝑏𝑡5. Find 𝑏 and 𝑛. 
Express the answers in terms of 𝜌 and 𝑔. 
(c) [3 分] 长时间后，液滴的半径随时间增加，满足关系式 𝑅(𝑡) = 	𝑏𝑡5。求 𝑏 和	𝑛。用 𝜌 和 𝑔 表示

答案。 
 
(d) [3 points] Find the value of the acceleration of the droplet after a long time. Express the answer in terms 
of 𝜌	and 𝑔. 
(d) [3 分] 找出长时间后液滴的加速度值。用 𝜌 和 𝑔 表示答案。 
 
Solution: 

(a) Take the initial position of the dust particle as the origin and the x-axis along the downward 
vertical. Let 𝑀(𝑡) and 𝑅(𝑡) be the mass and radius of the droplet at time 𝑡 respectively. Then 
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𝑀(𝑡) = 𝑀! +
4
3𝜋

(𝑅) − 𝑅!))𝜌 
Where 𝜌 is the density of the water mist. 

𝑑𝑀
𝑑𝑡 = 4𝜋𝜌𝑅*

𝑑𝑅
𝑑𝑡  

 
(b) The droplet has a cross section 𝜋𝑅* and sweeps out a cylinder of volume 𝜋𝑅*�̇� in unit time. As 

the rate of accretion is proportional to this volume, we have 
𝑑𝑀
𝑑𝑡 = 𝜌𝜋𝑅*�̇� 

Hence, the speed of the droplet is, 
�̇� = 4�̇� 

 
(c) The momentum conservation gives 

𝑀(𝑡 + 𝑑𝑡)�̇�(𝑡 + 𝑑𝑡) − 𝑀(𝑡)�̇�(𝑡) = 𝑀𝑔𝑑𝑡 

⇒
𝑑
𝑑𝑡
(𝑀�̇�) = 𝑀𝑔 

⇒ �̇�
𝑑𝑀
𝑑𝑡 +𝑀�̈� = 𝑀𝑔 

For large 𝑡, 𝑀(𝑡) ≈ ;
)
𝜋𝑅)𝜌, 	�̇� = 4𝜌�̇� and ,9

,.
≈ )9:̇

:
, we have 

�̈� +
3�̇�*

𝑅 =
𝑔
4 

A particular solution for large 𝑡	has the form 
𝑅(𝑡) = 𝑏𝑡5 

Substituting into the DE, 

𝑏𝑛(𝑛 − 1)𝑡5$* +
3𝑏*𝑛*𝑡*(5$%)

𝑏𝑡5 = (𝑏𝑛(𝑛 − 1) + 3𝑏𝑛*)𝑡5$* =
𝑔
4 

⇒ 𝑛 = 2 
and 

⇒ 𝑏 =
𝑔
56 

⇒ 𝑅(𝑡) =
𝑔
56 𝑡

* 
(d) 

�̇� = 4�̇� = 4 X
𝑔
28Y 𝑡 =

𝑔
7 𝑡 

⇒ �̈� =
𝑔
7 

The acceleration of the droplet is 𝑔/7 after a long time. 
 
 
3. [10 points] There is a solid metallic sphere of radius 𝑅, which is cut into two identical hemispheres. The 
cut surface is coated with a thin insulating layer of thickness 𝑑, and the two parts are put together so that 
the original shape of the sphere is restored. Initially, the sphere is electrically neutral. Then one of the 
hemispheres is given a positive charge +𝑄 while the other one remains neutral. You can assume 𝑑 ≪ 𝑅 in 
this problem. 
3. [10 分] 有一个半径为 𝑅 的固体金属球，被切成两个相同的半球。切割表面涂上一层厚度为 𝑑 的
薄绝缘层，并将两部分放回一起，以恢复球形。最初，金属球是电中性的。然后，一个半球被赋

予正电荷 +𝑄 ，而另一个则保持中性。在此问题中可假设 𝑑 ≪ 𝑅。 
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(a) [3 points] Find the charge on each surfaces of the sphere. 
(a) [3 分] 找出球体每个表面上的电荷。 
 
(b) [4 points] Find the electrostatic interaction force between two hemispheres. 
(b) [4 分] 找出两个半球之间的静电相互作用力。 
 
(c) [3 points] Find the electrostatic energy of the sphere. 
(c) [3 分] 求球体的静电能。 
 
Solution: 

(a) Inside the metallic hemispheres, the electric field should be zero. Next, consider a Gauss surface 
surrounding the insulating layer. The electric flux is zero and hence the net charge inside the close surface 
is zero. This means the two sides of the insulating layer have the same amount but opposite charge. And 
the insulating layer is negligibly thin, that means the charge doesn’t contribute any electric field except for 
the small space between the charge, just like two infinite-large parallel conductors. 
The electric field is zero inside the conducting sphere. This can only be done if the charge uniformly 
distributes on the outer surface. 

 
 
We have the conditions: 

𝑄* = 𝑄+ 
𝑄* + 𝑄, = 𝑄 
𝑄, = −𝑄- 
𝑄- + 𝑄+ = 0 

We get 

𝑄* = 𝑄, = 𝑄+ =
𝑄
2

 

𝑄- = −
𝑄
2

 

And the charge distribution are 

𝜎* = 𝜎+ =
𝑄

4𝜋𝑅,
 

+" Insulating layer
绝缘层

Neutral
电中性

#

+"

Neutral

"!

""

"#

"$
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𝜎, =
𝑄

2𝜋𝑅,
 

𝜎- = −
𝑄

2𝜋𝑅,
 

(b) The electric pressure (electric force per unit area) on the surface of a conductor is given by 

𝑃 = 𝜎𝐸./0 =
𝜎,

2𝜖)
 

The net force acting on the upper hemisphere is 

𝐹122.# = (𝑃* − 𝑃,)𝜋𝑅, =
𝜋𝑅,

2𝜖)
(𝜎*, − 𝜎,,) =

𝜋𝑅,

2𝜖)
S

𝑄,

16𝜋,𝑅+
−

𝑄,

4𝜋,𝑅+
U =

𝑄,

2𝜖)𝜋𝑅,
B
1
16

−
1
4C

= −
3𝑄,

32𝜖)𝜋𝑅,
 

The force is acting downward. 
 
For the lower hemisphere is, we have 

𝐹'34.# = (𝑃- − 𝑃+)𝜋𝑅, =
3𝑄,

32𝜖)𝜋𝑅,
 

which is acting upward. Hence the electrostatic (attractive) force between two hemispheres is 𝐹 = -5$

-,6%78$
. 

 
(c) We can calculate the electrostatic energy of the sphere using the electric field energy density 𝑢 = *

,
𝜖)𝐸,. 

 
Inside the insulating layer, the energy is 

𝑈* =
1
2
𝜖) B

𝜎,
𝜖)
C
,
× 𝜋𝑅,𝑑 =

𝑄,

8𝜖)𝜋𝑅
B
𝑑
𝑅C

 

 
where 𝑑 ≪ 𝑅 is the thickness of the layer. 
Inside the conductor, the electric field is zero and there is no energy associated with the field. 

𝑈, = 0 
Outside the sphere, the electric field is 

𝐸(𝑟) =
𝑄

4𝜋𝜖)𝑟,
 

And the total energy is 

𝑈- =
1
2
𝜖)D

𝑄,

16𝜋,𝜖),𝑟+
4𝜋𝑟,𝑑𝑟 =

𝑄,

8𝜋𝜖)
D

1
𝑟,
𝑑𝑟

(

8
=

𝑄,

8𝜋𝜖)𝑅
 

The total electrostatic energy of the sphere is 

𝐸 = 𝐸* + 𝐸, + 𝐸- ≈
𝑄,

8𝜋𝜖)𝑅
 

 
 
4. [10 points] Figure 4 shows a hollow glass tube with outer radius 𝑅 and inner radius 𝑟 respectively. The 
refractive index of the glass is 𝑛. From the outside air, the apparent inner radius of the tube is 𝑟7(i.e. the 
radius of the hollow portion observed from outside appears to be equal to 𝑟′). 
4. [10 分] 圖 4 表示一支中空玻璃管，其外半徑為 𝑅，内半徑為 𝑟，玻璃折射率為 𝑛。由外面空氣中

看來，該管之視內半徑為 𝑟′ (即空心部分的半徑從外面看起来等於 𝑟′)。 
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(a) [2 points] Find the ratio of the actual inner radius to the outer radius ?

:
. Express your answer in terms of 

𝛼, 𝛽 and 𝑛. 
(a) [2 分] 求真內半徑與外半徑的比值 ?

:
，以𝛼, 𝛽 和𝑛来表示。 

 
(b) [3 points] Find the ratio of the apparent inner radius to the outer radius ?

%

:
. Express your answer in terms 

of 𝛼, 𝛽 and 𝑛.  
(b) [3 分] 求視內半徑與外半徑的比值 ?

%

:
，以𝛼, 𝛽 和𝑛来表示。 

 
(c) [5 points] If 𝑅 = 4.0	mm, 𝑟7 = 0.50	mm	and	𝑛 = 1.6, calculate the actual inner radius 𝑟 of the glass 
tube up to 2 significant figures. 
(c) [5 分] 若𝑅 = 4.0	mm， 𝑟7 = 0.50	mm，𝑛 = 1.6，計算玻璃管的真內半徑𝑟，答案準確至兩位有

效數字。 
 
 
Solution: 
(a)  

𝑟
𝑅 = sin 𝛼 

(b) 

 
𝑟7 = 𝑅 sin 𝛽 

⇒
𝑟7

𝑅 = sin 𝛽 = 𝑛 sin 𝛼 
 
Due to a different interpretation of the apparent radius, we also accept the following solution. 

!
"

#

$

!
! − #

"′

$

%
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From the figure, we have 

𝑛 sin 𝛼 = sin 𝛽 
𝑟7

𝑅 = sin 𝛼 + cos 𝛼 tan(𝛽 − 𝛼) =
sin 𝛼 cos(𝛽 − 𝛼) + cos 𝛼 sin(𝛽 − 𝛼)

cos(𝛽 − 𝛼) =
sin 𝛽

cos(𝛽 − 𝛼) =
𝑛 sin 𝛼

cos(𝛽 − 𝛼) 

 
 

(c) It is given that 

𝑟7

𝑅 = 0.125 = 1.6 sin 𝛼 ⇒
𝑟
𝑅 = sin 𝛼 =

0.125
1.6 = 0.078125 

⇒ 𝑟 = 0.31	mm 
 
 
According to the other answer in part (b), we have 

𝑟7

𝑅 = 0.125 = 1.6
sin 𝛼

cos(𝛽 − 𝛼) 

⇒ @ABC
DE@(F$C)

= !.%*(
%.H

= 0.078125 = 𝑥 ≪ 1  [4.1] 

Since sin 𝛼 = ?
:
< ?%

:
= 0.125 and sin 𝛽 = 𝑛 sin 𝛼 < 1.6 × 0.125 = 0.2 are small, we can approximate  

sin 𝛼
cos(𝛽 − 𝛼) ≈

𝛼

1 − 12 (𝛽 − 𝛼)
*
≈

𝛼

1 − 12 (𝑛 − 1)𝛼
*
= 𝑥 

⇒
1
2
(𝑛 − 1)𝑥𝛼* + 𝛼 − 𝑥 = 0 

 𝛼 = 0.07798 
⇒
𝑟
𝑅 = 0.07798 
𝑟 = 0.31	mm 

If you solve the equation [4.1] exactly, you will get 𝛼 = 0.07812 and 𝑟 = 0.312	mm 
 
 

 

  

!
" − !

$′

&

"


