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1. [10 points]

A static insulating container of mass M and cylindrical shape is placed in vacuum. One of its ends is closed.
Initially, an insulating piston of mass m and negligible width separates the volume of the container into
two equal parts. The closed part contains n moles of monoatomic ideal gas with molar mass M, and
temperature T. Assume that the container wall is smooth.
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(a) [2 points] Assume that the state of gas during its expansion can be approximated by thermal equilibrium
condition, what is the temperature of the gas T when the piston left the container?
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(b) [4 points] At the moment when the piston leaves the container, the gas and the container will move with
speed v and the piston will move with speed u. Find v and u.

(b) [4 73] FURZEE A S —Z] - SUEANE SR VR v #5) - MEZELURR u )] - K v M
u o

(c) [4 points] When all the gas has left the container, the final speed of the container further changes from
v to v + v'. Estimate v’ using the kinetic theory of gases. Assume that the final speed of the container is
much less than the thermal speed of the molecules.
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The gas constant is R. There is no heat exchange between the gas, container and the piston. The change of
the temperature of the gas, when it leaves the container, can be neglected. The gravitation of the Earth can
be neglected.
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Solution:
(a) When the gas expands, there is no heat exchange and the process is adiabatic. We have

=i __ y-1
TV~ =TyV,
3
241
where y = z—p =2 =2and V¢ = 2V. The final temperature is

3
= 3
v >

Reference: The validity range of the steady-state adiabatic law

Using the differential form of the first law of thermodynamics,

3
dUu = EanT'

dQ =0,

1
dW = pdV + Mvdv + ZnM0 (v —uw)(dv — du) + mudu.

This yields

3 1 1 1 1
EanT = —pdV — [(M + ZnMO) v — ZnMOu] dv — [(m &5 ZnMO) u-— ZnMov] du.

Let A be the cross-section area of the cylinder. Then in time dt,
dV = A(u + v)dt.

Here we have defined v in the forward direction, and u in the backward direction. Using conservation of
linear momentum,

1 1
(M +§nM0)v = (m +§nM0) u.

Expressing u and v in terms of V/,

1
M+§nM0 1dv
M+m+nM, |A dt’

u =

1
m+§nM0 1dV

I\ M+m+nm, |4 at

Eliminating u and v, and dividing by dt, we obtain
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1 1 1 1 1
— <M+ZnM0) <m+§nM0) _EnMO <M+§nMO) <m+§nM0)

+( +1M)(M+1M)2 1 1dV d?v
Mmoo 2"0) [ (M +m +nMy)? 42 dt dt?

Using ideal gas law,

3dT+TdV_ u dv d?v
2dt  Vdt  nRA?dt dt?
Here we have introduced the reduced mass:

1 1 I | 1 1

4 2 2 2 2
| +1M)(M+1M)2 L
mE gt 2"M0) M + m + nMy)?

2
Let x = TV3. Then we have

dx?) _ 4p 24V d%V
dt ~  3nRA%2  dt dt?

2
Although this equation is difficult to solve analytically, it shows that TV3 is not a constant, that is, the
steady-state adiabatic law is not applicable.

However, the steady-state adiabatic law is approximately correct if the motion during expansion is
sufficiently low, since it is proportional to i%. In other words, the approximation is valid when the
momentum of the system is negligible.

(b) By the conservation of momentum and energy,
(M +nMy)v—mu =0

1 , 1 3
E(M + nM,)v +§mu =—AU = EnR(T —Tf)

3 (1 2_%) mnRT
= = —
v (nM, + M)(m + nM, + M)

2\ (nMy + M)nRT
:u=j3(1—23)( o + M)

m(m +nM, + M)

In fact, we can consider a more realistic situation. , If the thermal motion of the gas is much larger than v
and u, we can assume that the density of gas p is uniform during the expansion.
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Imagine that we have divided the gas into N slices, the mass of each slice is

nM,
Am = 0
At time t, the location of the i-th slice is
(u+v)t
x; = —vt+ Tl
fori = 0,1,2,..., N — 1. Hence the velocity of the i-th slice is
. (u+v) .
=>x=-v+ N l

The total momentum of the gas is

. nM, u+v, u+v )
Pyas = ZAmxi =N ' (—v+ N l) =nM, (—v+ N2 ZL)
L

U

u+vN(N+1) u+v u—v
=nM,|—v+ N2 > anO(—v+ > )=nM0( > )

The total kinetic energy of the gas is,
1 nM, 2v(u+v U+ v)?
EgaszzzAmxl?: 0 (vz— Gy, e i2>
i

2N £ N NZ
A
_nMy [ 2v(u+v)N(N+1)+(u+v)2N(N+1)(2N+1)
~ 2\ N2 2 N3 6
nM u+ v)? nM
~ Zo(vz—v(u+v)+( 2 )>= 60(u2—uv+v2)

The conservation of energy and momentum give, (we define o = %nMO)
Mv+a(v—u)—mu=0

1 a 1 3
EMUZ +§(u2 —uv + v?) +§mu2 =—AU = EnR(T —Tf)
=> 2 = EnRT (1 - 2%) X (m + a)”
2 BM+a)(m+a)>+Bm+2a)(M + a)? —2a(M + a)(m + a)
=>u? = EnRT (1 — 2%) X U + o)
2 BM+a) (m+a)>+Bm+2a)(M + a)? —2a(M + a)(m + a)

(c) When the piston leaves the container, half of the gas particle will leave the container without any effect.
And the other half will hit the bottom of the container before leaving the container. Each atom gives the
container a momentum

Ap = 2mv,
where m = M, /N, is the mass of each atom. By the kinetic theory,



and

We get

= Ap =2 /kaf

The total momentum received by the container (due to the half of the gas) is

nN,
p= (TA) Ap = nN, kaf =nN, N_AN_A = n,/MORTf = 2_1/311,/M0RT

Notice that nRT = NkT = k = %R = R/N,. And the gain of the velocity is

P _ s MRT
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Alternative solution:

We first assume p(t) is decaying exponentially with the relaxation time as the time scale. This assumption is valid if
the gas is allowed to diffuse in space freely, but due to the particular geometry of the cylinder, the gas can only
diffuse out the cylinder at the end. This significantly modifies the exponential decay of the pressure.

Without solving the hydrodynamic equations, we adopt the following simplified picture:

Att = 0, the gas near the end (x = L) starts to diffuse out, whereas gases inside the cylinder remains at the
initial pressure.

L

At0 < t < gases within a distance L — v,.,,st starts to diffuse out, whereas gases deeper inside the

7
Vrms

cylinder remains at the initial pressure. The pressure is approximately
p(x,t) = pr forx < L-vppt,

=l G Drppel
p(x,t) = prexp [_f forx > L - vyt

where [ is mean free path of the gas.

Att > —=

, even gases near the end wall starts to diffuse out. The pressure is approximately

Urms

x-L + vt
p(x,t) = prexp [—frms]

Summarizing, we can write

=1L aF vrmst]}

p(x,t) = prmin {1, exp [— l

The result is summarized in the following figure, where time is scaled in units of L /v,,,s. For illustration, we have
L o
used 1= 10, which is exaggerated.
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Now we can focus on the pressure on the wall. The pressure is effectively unchanged before the time ,and

Vrms

exponentially decay afterwards. Atx = 0,

IL
p(0,t) = py fort < ,

rms

I = Bgagls IL
p(0,t) = prexp [ﬂ] fort > .
l vaS

Hence the total momentum transfer to the wall is

L « t
Ap = Apf( )+Apff exp (—;) dt,
0

vrms

. . . .
is the relaxation time. The result is

where T =

Vrms

Ap = Apy + Apyt. [1]

vaS

The first term is the result of kinetic theory, whereas the second term is due to the period of unchanged pressure.
For L >> I, the first term is most important.

Interpretation of the second term
In eqtn [1], the physics of the first was originated from the kinetic theory of the molecules, which is valid
at low density. The second term can be interpreted in the following way.

At higher density, a hydrodynamic model of the molecules is required. The mean free path [ of the
molecules is given by the condition
prtD?l = 1.
Here p = nN,/V is the number density of the molecules. Ny is the Avogadro’s number. Hence
P
nD2Nyn’

The average speed of the molecules is given by

Jw?) =

3kBTf_ 3RT;
my B M,

Hence the relaxation time of gas density is given by
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The momentum change of the container is given by the impulse, which is the integration of the force and
the time. Hence the momentum change Ap is given by

Ap = ApsT = .
R A ET A /3RTf

Using ideal gas law, psVy = nRTy,
A /M,RT

DN, LT

Ap = ApsT =

And the change of the velocity is
A MyRT
~ mD2N, 312213V

!
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2. [10 points] A spherical dust particle falls from rest through a water mist cloud of uniform density. The
initial mass and radius of the spherical dust is M, and R, respectively. The rate of accretion onto the droplet
is equal to the volume of the mist cloud swept out by the droplet per unit time. Let p be the density of water
mist and g be the gravitational acceleration.

We assume the density of water mist p does not change after accretion and ignore air friction other than
that from accretion.
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(a) [2 points] Let M(t) and R(t) be the mass and radius of the droplet at time t respectively. Find a
dR
dt’
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(b) [2 points] Find the speed of the droplet at time t. Express the answer in term of p, R and R.
(b) [2 7] >RAERSIA] ¢ HRGRZERE - H p, R M1 R FREZE -

(c) [3 points] After a long time, the radius of the droplet increases with time as R(t) = bt™. Find b and n.
Express the answers in terms of p and g.
() [3 53] KA - BOEEY-FEEERERT [0 - R ZRICR(E) = bt™ - Kb fIn - M p M g TR

=4
=

(d) [3 points] Find the value of the acceleration of the droplet after a long time. Express the answer in terms
of pand g.
(d) [3 73] I R SRRV IR EEE - F p 1 g RREE -

Solution:
(a) Take the initial position of the dust particle as the origin and the x-axis along the downward
vertical. Let M (t) and R(t) be the mass and radius of the droplet at time t respectively. Then




4
M() = My + 5 (R® ~ RY)p

Where p is the density of the water mist.

M _, ., dR
dr PR

(b) The droplet has a cross section TR? and sweeps out a cylinder of volume mR?x in unit time. As

the rate of accretion is proportional to this volume, we have

M _
a " X
Hence, the speed of the droplet is,

x = 4R

(c) The momentum conservation gives
M(t +dt)x(t +dt) — M(t)x(t) = Mgdt

d .
:E(Mx) = Mg

. dM L Mi=M
= —_— =
X . X g
For large t, M(t) ~ %nR3p, X = 4pR andi—l\: ~ %, we have
. 3R? g
R+—=~
* R 4
A particular solution for large t has the form
R(t) = bt™
Substituting into the DE,
3b2n2t2(”_1) g
_ n—-2 = _ 2yy+n—-2 _ <
bn(n — 1)t" 2% + en (bn(n —1) + 3bn®)t 2
>n=2
and
g
=>b=—
s
= R(t) = —t?
=<
(d) g g
X = 4R 24(%)15:71?
o329
*=7

The acceleration of the droplet is g/7 after a long time.

3. [10 points] There is a solid metallic sphere of radius R, which is cut into two identical hemispheres. The
cut surface is coated with a thin insulating layer of thickness d, and the two parts are put together so that
the original shape of the sphere is restored. Initially, the sphere is electrically neutral. Then one of the
hemispheres is given a positive charge +Q while the other one remains neutral. You can assume d << R in
this problem.
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(a) [3 points] Find the charge on each surfaces of the sphere.
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(b) [4 points] Find the electrostatic interaction force between two hemispheres.
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(c) [3 points] Find the electrostatic energy of the sphere.
(c) [3 73] SKERIRHYAFHLAE

Solution:
(a) Inside the metallic hemispheres, the electric field should be zero. Next, consider a Gauss surface

surrounding the insulating layer. The electric flux is zero and hence the net charge inside the close surface
is zero. This means the two sides of the insulating layer have the same amount but opposite charge. And
the insulating layer is negligibly thin, that means the charge doesn’t contribute any electric field except for
the small space between the charge, just like two infinite-large parallel conductors.

The electric field is zero inside the conducting sphere. This can only be done if the charge uniformly
distributes on the outer surface.

Q1

Q2

Q3

Q4

We have the conditions:

Q1 =04
Q1+0Q2=0Q
Q2 = —Q3
Q3+0Q,=0
We get
Q1 =02 =04 =%
0n=-2
And the charge distribution are
01 =04 = Q
47R2



Q

%2 = onR?

% = T onR?

(b) The electric pressure (electric force per unit area) on the surface of a conductor is given by
Y
P =0Egy = 2_60
The net force acting on the upper hemisphere is
nR? nR? 2 2 2 1 1
Fupper = (Py = PR = 2_60(012 = az) = 2¢q <16§2R4 - 47:22124) - ZEOQT[RZ (E - Z)
3Q%
= T 32¢,1R2
The force is acting downward.

For the lower hemisphere is, we have

F (P; — P,)TR? —302
= —_ T —
lower 3 4 32607'[R2
T . . . . . 3Q2
which is acting upward. Hence the electrostatic (attractive) force between two hemispheresis F = 326Q7TR2.
0

. . - . 1
(c) We can calculate the electrostatic energy of the sphere using the electric field energy density u = > € E2.

Inside the insulating layer, the energy is

where d « R is the thickness of the layer.
Inside the conductor, the electric field is zero and there is no energy associated with the field.

Uz - 0
Outside the sphere, the electric field is
Q
E =
) 4A1reyr?
And the total energy is
1 QZ Q2 o 1 QZ
Us; == ———Anr?dr = —dr =
8= f 16m2elr* e 87‘[60,L 2% T Bre,R
The total electrostatic energy of the sphere is
QZ
E=E +E,+E;=
12T T e R

4. [10 points] Figure 4 shows a hollow glass tube with outer radius R and inner radius r respectively. The
refractive index of the glass is n. From the outside air, the apparent inner radius of the tube is r'(i.e. the
radius of the hollow portion observed from outside appears to be equal to ).

4.[10 53] I8 4 TR — P ZEBaEE - HIME R R - WHEER o BEEITSREn - B EZER S
B B RN v (B2 LER o IS MEE LR F R 1) -

10



(a) [2 points] Find the ratio of the actual inner radius to the outer radius %. Express your answer in terms of
a, and n.
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(b) [3 points] Find the ratio of the apparent inner radius to the outer radius %. Express your answer in terms
of a, f and n.
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(c) [5 points] If R = 4.0 mm, " = 0.50 mm and n = 1.6, calculate the actual inner radius r of the glass
tube up to 2 significant figures.
() [5 /3] R =4.0mm > r' =0.50mm > n = 1.6 > FFRIFHFENVENFEr - BEREMEFIA

Solution:
(@)

=sina

| =

(b)

r' =Rsinf
rl
:Ezsinﬁ =nsina

Due to a different interpretation of the apparent radius, we also accept the following solution.

11



From the figure, we have

nsina = sinf§

o N an( )_sinacos(,B—a)+cosasin(ﬁ—a)_ sinf  nsina
g~ SmaTcosatan f-a)= cos(ff — a) “cos(B—a) cos(f —a)
(c) Itis given that
r 0.125 = 1.6 si ~ =i 0125 0.078125
R sina = - = sina Te

=1 =0.31 mm

According to the other answer in part (b), we have
!

T 0425=16_ D¢
R 77 cos(f—a)
sin a 0.125
= =0.078125 = x < 1 [4.1]

cos(f—a) T 16
< % = 0.125and sinf = nsina < 1.6 X 0.125 = 0.2 are small, we can approximate
sina a a

cosB-a) "1 _Lig_oye 1-lo-ne

o . T
Since sina = =

=x

1
:>§(n—1)xa2+a—x= 0
a = 0.07798
r
= —=10.07798
R

r = 0.31 mm
If you solve the equation [4.1] exactly, you will get @ = 0.07812 and r = 0.312 mm
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