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Pan Pearl River Delta Physics Olympiad 2021 

2021 年泛珠三角及中华名校物理奥林匹克邀请赛 
Sponsored by Institute for Advanced Study, HKUST 

香港科技大学高等研究院赞助 
Simplified Chinese Part-1 (Total 4 Problems, 40 Points) 简体版卷-1（共4题，40分） 

(9:30 am – 12:00 pm, 15th May 2021) 
 

Please fill in your final answers to all problems on the answer sheet. 
请在答题纸上填上各题的最后答案。 

At the end of the competition, please submit the answer sheet only. Question papers and working sheets 
will not be collected. 
比赛结束时，请只交回答题纸，题目纸和草稿纸将不会收回。 

 
1. [10 points]  
A uniform thin rigid rod of mass 𝑚 is supported by two rapidly rotating rollers, whose axes are separated 
by a fixed distance 𝑎. The rod is initially placed at rest symmetrically as shown in Fig.1a. 
质量為	𝑚 的均匀细刚性杆由两个快速旋转的滚筒支撑，两个滚筒的轴线距离為	𝑎。杆最初如图 1a
所示对称放置。 
 
(a) [5 points] Assume that the rollers rotate in opposite directions as shown in Fig.1a. The coefficient of 
kinetic friction between the rod and the rollers is 𝜇. Solve for the displacement 𝑥(𝑡) of the center 𝐶 of the 
rod from roller 1 assuming 𝑥(0) = 𝑥! and �̇�(0) = 0. 
(a) [5 分] 假设滚筒以相反方向旋转，如图 1a 所示。杆和滚筒之间的动摩擦系数为	𝜇。假设𝑥(0) =
𝑥! 和 �̇�(0) = 0，求杆中心 C 从滚筒 1 量度的位移 𝑥(𝑡)。 
 
(b) [5 points] Now consider the case in which the direction of rotation of the rollers are reversed, as shown 
in Fig.1b. Find the displacement 𝑥(𝑡), again assuming 𝑥(0) = 𝑥! and �̇�(0) = 0. 
(b) [5 分] 现在考虑使滚筒的旋转方向反向的情况，如图 1b 所示。假设𝑥(0) = 𝑥! 和 �̇�(0) = 0，求

杆中心 C 从滚筒 1 量度的位移 𝑥(𝑡)。 
 

 
 
 
Solution: 
(a) The free-body diagram of the rod is: 
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Fig. 1a Fig. 1b
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For equilibrium along the vertical direction, we have 

𝑁" + 𝑁# = 𝑚𝑔 
𝑎𝑁# = 𝑥𝑚𝑔 

⇒ 𝑁" = 21 −
𝑥
𝑎5𝑚𝑔	 

⇒ 𝑁# =
𝑥
𝑎𝑚𝑔 

 
The kinetic friction forces are  

𝑓" = 𝜇𝑁"				𝑎𝑛𝑑			𝑓# = 𝜇𝑁# 
With directions as shown in the figure. 
Newton’s 2nd law gives 

𝑚�̈� = 𝑓" − 𝑓# =
𝜇𝑚𝑔
𝑎

(𝑎 − 2𝑥) 
Define 𝜉 = 2𝑥 − 𝑎, we have 

𝜉̈ = −
2𝜇𝑔
𝑎 𝜉 

is a SHM. 
⇒ 𝜉(𝑡) = 2𝑥(𝑡) − 𝑎 = 2𝐴 cos(𝜔𝑡 + 𝜙) 

where 𝜔 = B#$%
&
. 

⇒ 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜙) +
𝑎
2 

At 𝑡 = 0, 𝑥(0) = 𝑥! and �̇�(0) = 0, we have 

𝑥(𝑡) = 2𝑥! −
𝑎
25 cosC

D2𝜇𝑔
𝑎 𝑡E +

𝑎
2 

 
(b) By reversing the direction of rotation of the rollers, we have 

𝑚�̈� = 𝑓# − 𝑓" =
𝜇𝑚𝑔
𝑎

(2𝑥 − 𝑎) 
Define 𝜉 = 2𝑥 − 𝑎, we have 

�̈� =
2𝜇𝑔
𝑎 𝜉 

⇒ 𝜉(𝑡) = 2𝐴𝑒'( + 2𝐵𝑒)'( 

where 𝜔 = B#$%
&
. 

⇒ 𝑥(𝑡) = 𝐴𝑒'( + 𝐵𝑒)'( +
𝑎
2 

By the initial conditions, we have 𝐴 = 𝐵 and 

× "

#
$

× "

Fig. 1b
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𝑥(0) = 𝑥! = 2𝐴 +
𝑎
2 ⇒ 𝐴 =

1
2 2𝑥! −

𝑎
25 

⇒ 𝑥(𝑡) = 2𝑥! −
𝑎
25
𝑒'( + 𝑒)'(

2 +
𝑎
2 = 2𝑥! −

𝑎
25 cosh𝜔𝑡 +

𝑎
2 

𝑥(𝑡) = 2𝑥! −
𝑎
25 coshC

D2𝜇𝑔
𝑎 𝑡E +

𝑎
2 

 
 

2. [10 points]  
A cylindrical tank filled with liquid is placed on the side of the table. A small hole is opened on the wall 
of the tank near the bottom. The liquid flows out horizontally through the small hole, and hits at point 𝑃 
on the floor. The height of the table is 𝐻, the area of the hole is "

*
			(assume 𝑘 ≫ 1) of the area of the 

bottom of the tank, and the initial height of the liquid in the tank is ℎ!. Find the velocity 𝑣 at which the 
drop point P moves along the floor and the time 𝑇 required for all liquid to flow out of the tank. 

在桌边放着装有液体的圆柱形容器，容器壁靠近底部开有小孔，液体经小孔水平流出，液柱射在

地板上的𝑃点。桌面高度为𝐻，孔的面积是容器底部面积的 
"
*
 (假设 𝑘 ≫ 1)，原来容器中液体高

ℎ!。求落点𝑃沿地板移动的速率	𝑣	及所有液体从容器中流出所需的时间	𝑇。 

 

 
 

Solution: 

(a) Assuming the when the height of the liquid inside the cylindrical tank is ℎ, the drop of the water 
surface inside the tank has speed 𝑢	and the liquid coming out from the hole has speed 𝑉. Since the 
volume of the liquid is unchanged, we have 

𝑉 = 𝑘𝑢 

Bernoulli’s equation gives 

𝑝! +
1
2𝜌𝑉

# = 𝑝! + 𝜌𝑔ℎ +
1
2𝜌𝑢

# 

!

ℎ!

#×
%
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⇒ 𝑉 =
𝑘T2𝑔ℎ
√𝑘# − 1

 

The horizontal range of the liquid is 

𝑠 = 𝑉𝑡 = 𝑉 × D
2𝐻
𝑔 =

𝑘T2𝑔ℎ
√𝑘# − 1

×D
2𝐻
𝑔 =

2𝑘√ℎ𝐻
√𝑘# − 1

	 

Therefore the position of 𝑃 depends on the liquid height ℎ. The speed of 𝑃	is 

𝑣 =
𝑑𝑠
𝑑𝑡 =

2𝑘√𝐻
√𝑘# − 1

𝑑
𝑑𝑡
√ℎ =

𝑘√𝐻
√𝑘# − 1

1
√ℎ

𝑑ℎ
𝑑𝑡 =

𝑘√𝐻
√𝑘# − 1

𝑢
√ℎ

=
√𝐻

√𝑘# − 1
𝑉
√ℎ

=
𝑘

𝑘# − 1T2𝑔𝐻 

(b) There are 2 different ways to find 𝑇. 

Method 1: 

Initially, the position of 𝑃 is 

𝑠! =
2𝑘Tℎ!𝐻
√𝑘# − 1

 

Notice that 𝑣 is independent of ℎ, point 𝑃 moves with the constant speed. When the tank is empty, 𝑃 
should be under the tank. 

𝑇 =
𝑠!
𝑣 =

2𝑘Tℎ!𝐻
√𝑘# − 1

𝑘# − 1
𝑘

1
T2𝑔𝐻

= D
2ℎ!(𝑘# − 1)

𝑔  

Method 2: 

The speed of the water surface reads, 

𝑑ℎ
𝑑𝑡 = −𝑢 = −

T2𝑔ℎ
√𝑘# − 1

 

⇒
𝑑ℎ
√ℎ

= −D
2𝑔

𝑘# − 1𝑑𝑡 

⇒ 2Tℎ! = D 2𝑔
𝑘# − 1𝑇 

⇒ 𝑇 = D
2ℎ!(𝑘# − 1)

𝑔  
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********************************** 

Remark: 

The calculation above is based on the assumption that 𝑘 ≫ 1 and the flow is approximately steady (i.e. 
the velocity of the fluid inside the tank doesn’t change in time). In fact, we can generalize the calculation  
by considering the non-steady flow of the fluid. 

We first consider the potential energy of the fluid inside the tank when the height of the fluid is ℎ, 

𝑈(ℎ) = 𝜌𝑔𝐴ℎ ×
ℎ
2 ⇒

𝑑𝑈
𝑑𝑡 = 𝜌𝑔𝐴ℎ

𝑑ℎ
𝑑𝑡 = −𝜌𝑔ℎ𝐴𝑢 = −𝜌𝑔ℎ Y

𝐴
𝑘Z𝑉 

where 𝑢 is the velocity of the fluid inside the tank and 𝑉 is the velocity of the fluid coming out from the 
hole (𝑢 = +

*
). 

Next, the total kinetic energy of the fluid inside the tank is (N.B. because of the conservation of 
mass/continuity equation, the speed of the fluid inside the tank will be the same), 

𝐾(&,* =
𝜌𝑢#

2 𝐴ℎ =
1
2𝜌

𝐴ℎ
𝑘# 𝑉

# 

⇒
𝑑𝐾(&,*
𝑑𝑡 =

1
2
𝜌𝐴
𝑘#
𝑑ℎ
𝑑𝑡 𝑉

# + 𝜌
𝐴ℎ
𝑘# 	𝑉

𝑑𝑉
𝑑𝑡 = −

1
2
𝜌𝐴
𝑘- 𝑉

- +
𝜌𝐴
𝑘# 	ℎ𝑉

𝑑𝑉
𝑑𝑡  

Finally, the rate at which kinetic energy exits the tank via the hole is 

𝑑𝐾./0(
𝑑𝑡 =

𝑑𝑚./0(

𝑑𝑡
𝑉#

2 =
𝜌𝐴
𝑘
𝑉-

2  

Conservation of energy implies, 

𝑑𝑈
𝑑𝑡 +

𝑑𝐾(&,*
𝑑𝑡 +

𝑑𝐾./0(
𝑑𝑡 = 0 

⇒ 2𝑔ℎ = Y1 −
1
𝑘#Z𝑉

# +
2
𝑘 	ℎ

𝑑𝑉
𝑑𝑡  

We can change the independent variable form 𝑡 to ℎ using the chain rule in calculus, 

𝑑𝑉
𝑑𝑡 =

𝑑𝑉
𝑑ℎ

𝑑ℎ
𝑑𝑡 =

𝑑𝑉
𝑑ℎ

(−𝑢) = −
𝑉
𝑘
𝑑𝑉
𝑑ℎ = −

1
2𝑘
𝑑𝑉#

𝑑ℎ  

We obtain the ODE, 

2𝑔ℎ = Y1 −
1
𝑘#Z 𝑉

# −
1
𝑘# ℎ

𝑑𝑉#

𝑑ℎ  

⇒
𝑑𝑉#

𝑑ℎ − (𝑘# − 1)
𝑉#

ℎ = −2𝑔𝑘# 
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Introducing an integrating factor 𝑓 such that 

𝑑
𝑑ℎ

(𝑓𝑉#) = 𝑓
𝑑𝑉#

𝑑ℎ + 𝑉#
𝑑𝑓
𝑑ℎ = 𝑓 \

𝑑𝑉#

𝑑ℎ − (𝑘# − 1)
𝑉#

ℎ ] = −2𝑔𝑘#𝑓 

⇒
𝑑𝑓
𝑑ℎ = −(𝑘# − 1)

𝑓
ℎ	 

⇒ 𝑓 = ℎ")*! 

The ODE can be rewritten as 

𝑑
𝑑ℎ	^ℎ

")*!𝑉#_ = −2𝑔𝑘#ℎ")*! 

Integrating the equation with the initial condition is that 𝑉(ℎ!) = 0, we have 

𝑉(ℎ) = T2𝑔ℎa
1 − Y ℎℎ!

Z
*!)#

1 − 2
𝑘#

 

The plot of the solution is shown below. 

 

For the limiting case in which 𝑘 → ∞	(narrow opening) and 𝑘 → 1	(free fall of water), the solution 
reduces to 

𝑉(ℎ, 𝑘 = 1) = T2𝑔(ℎ! − ℎ) 

t = 0, when depth of the (inviscid) water in the tank is h0. The solution to this equation,
subject to these initial conditions, is given by,3

V (h) =

√

2gh
1 − (h/h0)

1−2r
r

1 − 2r
=

√
2gh0

√
h

h0

1 − (h/h0)
1−2r

r

1 − 2r
(0 ≤ h ≤ h0), (16)

where r = (a/A)2. For the limiting cases in which r = 0 or 1, this solution reduces to,

V (h, r = 0) =
√

2gh, V (h, r = 1) =
√

2g(h0 − h). (17)

For the case of r = 1 (i.e., the case in which the exit-hole area is equal to the tank area),
the above equation for the efflux velocity V is, as expected, just that predicted for free fall.

Results from eq. (16) for the efflux V 2, normalized by 2gh0, as a function of the (di-
mensionless) fluid-depth ratio h/h0 and the (dimensionless) area ratio a/A are shown in the

3We follow, for example, https://en.wikipedia.org/wiki/Linear_differential_equation, in the section on
First-order equation with variable coefficients, and write eq. (10) as,

dV 2

dh
= V 2 1 − r

hr
− 2g

r
, (11)

with r = a2/A2. The solution is,

V 2 = eF

(
C − 2g

r

∫
e−F dh

)
, (12)

where C is a constant and,

F =
∫

1 − r

hr
dh =

1 − r

r
lnh, eF = h

1
r−1,

∫
e−F dh =

∫
h1− 1

r dh =
r

2r − 1
h2− 1

r . (13)

Hence,
V 2 = h

1
r −1

(
C +

2g

1− 2r
h2−1

r

)
=

(
Ch

1
r−1 +

2gh

1 − 2r

)
=

(
Ch h

1
r−2 +

2gh

1 − 2r

)
. (14)

Since V 2 = 0 when h = h0, C = −2gh
2− 1

r
0 /(1 − 2r), and finally,

V 2 =
2gh

1 − 2r

(
1 − (h/h0)

1−2r
r

)
. (15)

3
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𝑉(ℎ, 𝑘 → ∞) = T2𝑔ℎ 

which is equal to our result obtained in part (a) in the limit of 𝑘 → ∞. 

********************************** 

 

 

3. [10 points]  
A uniformly magnetized iron sphere of magnetic moment 𝑚dd⃗ = 𝑚�̂� and radius 𝑅 is suspended from the 
ceiling by an insulating thread. A total charge 𝑄 > 0 is uniformly distributed throughout the iron sphere. 
We use the Cartesian coordinate where the origin is located at the center of the sphere, 𝑥𝑦-plane is the 
horizontal plane and 𝑧-axis is pointing upward. 
磁矩为 𝑚dd⃗ = 𝑚�̂� 且半径为 𝑅 的均匀磁化铁球通过绝缘线悬挂在天花板上。总电荷𝑄 > 	0 均匀分布

在整个铁球中。我们使用笛卡尔坐标，其原点位于球体的中心，𝑥𝑦-平面是水平面，𝑧轴指向上方。 
 
The magnetic field at position r due to a magnetic dipole 𝑚dd⃗  at origin is given by  
由位於原點的磁偶极子	𝑚dd⃗  所產生的磁场， 在位置	𝑟	处为 

𝐵d⃗ (�⃗�) =
𝜇!
4𝜋𝑟- \

3(𝑚dd⃗ ⋅ 𝑟)𝑟
𝑟# −𝑚dd⃗ ] 

 
 
(a) [3 points] The Poynting vector 𝑆(𝑟) at point 𝑟 is defined as 
(a) [3 分] 坡印廷矢量𝑆(𝑟)在点	�⃗� 上的定义为 

𝑆(𝑟) =
1
𝜇!
𝐸d⃗ × 𝐵d⃗ , 

 
where 𝐸d⃗  and 𝐵d⃗  are the electric and magnetic fields at point 𝑟. Calculate the magnitude of the Poynting 
vector 𝑆(�⃗�) both inside and outside of the iron sphere. 
其中	𝐸d⃗  和 𝐵d⃗  为点 𝑟 的电场和磁场。计算铁球内部和外部的坡印廷矢量 𝑆(𝑟) 的大小。 
 

Magnetorlatic Field and Quari-Stationary Electtomagnetic Field 249 

(a) This system has an angular momentum. 

Fig. 2.60 

(b) Let m be the magnetic moment of the sphere. The magnetic field 
at a point r outside the sphere is 

Suppose the sphere carries a charge Q. As the sphere is a conductor, the 
electric field inside is zero and the electric field outside is 

r .  E=- 
4 ?rho r3 
Q 

Therefore the electromagnetic momentum density in the space outside the 
sphere, as m = me, = m(cosBe, - sin Bee) in spherical coordinates, is 

and the angular momentum density is 

pomQ sin B 
1 6r2 r4 j = r x g = -  eo * 

Because of symmetry the total angular momentum hss only the z- 
component, which is obtained by the integration of the z component 
of j: 

where V is the voltage of the sphere. As the electrons are being injected 
radially on the sphere, the charge Q decreases, causing the electromagnetic 
angular momentum to decrease also. However, because of the conservation 

!

"

#
$

%

-'

(
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(b) [2 points] In fact, the system has a non-zero angular momentum due to the electromagnetic field. The 
angular momentum 𝐿 depends on the size of the sphere 𝑅, the charge 𝑄 and the magnetic dipole moment 
𝑚  on the sphere, and the physical constant 𝜇! . We shall write 𝐿 = 𝐾𝜇!1𝑅2𝑄3𝑚4  where 𝐾  is a 
dimensionless constant. Find 𝛼, 𝛽, 𝛾 and 𝜂 using dimensional analysis. 
(b) [2 分] 实际上，由于电磁场的存在，系统的角动量非零。角动量 𝐿 取决于铁球的半径 𝑅，球上

的电荷 𝑄 和磁偶极矩	𝑚 以及物理常数	𝜇!。我们将写成 𝐿 = 𝐾𝜇!1𝑅2𝑄3𝑚4  ，其中	𝐾 是无量纲常数。

使用量纲分析找 𝛼，𝛽，𝛾 和 𝜂。 
 
(c) [3 points] To calculate the total angular momentum 𝐿d⃗  of the system, it is given than the angular 
momentum density [angular momentum of the EM field per unit volume] 𝑙(𝑟) of the electromagnetic field 
at a point 𝑟 is 
(c) [3 分] 为了计算系统的总角动量 𝐿d⃗ ，已知在点 𝑟 处的电磁场角动量密度 [电磁场在每单位体积的

角动量] 𝑙(𝑟)	是 

𝑙(�⃗�) =
1
𝑐# 𝑟 × 𝑆 

where 𝑐 is the speed of light. Calculate the total angular momentum 𝐿d⃗  of the system. 
其中	𝑐 是光速。计算系统的总角动量 𝐿d⃗ 。 
 
(d) [2 points] Electrons are injected into the iron sphere along the 𝑧-axis. The total amount of the charge in 
the sphere will reduce and the sphere will rotate. Find the angular speed of the sphere after the injection of 
𝑁 electrons. Assume that the moment of inertia of the iron sphere is 𝐼 and each electron has charge −𝑒. 
(d) [2 分] 电子沿	𝑧 轴注入铁球。球体中的总电荷量减少，并且球体将旋转。找出	𝑁粒电子注入后

球的角速度。假设铁球的惯性矩为	𝐼，并且每个电子的电荷为 −𝑒。 

 

Solution: 

[Solution 1] Since iron is a conductor, the charges will redistribute on surface of the sphere. 
(a) The electric field inside the sphere is zero and the electric field outside is 

𝐸d⃗ =
𝑄

4𝜋𝜖!𝑟-
�⃗� 

Hence the Poynting vector inside the sphere is 𝑆 = 0. Outside the sphere, 

𝑆 =
1
𝜇!
𝐸d⃗ × 𝐵d⃗  

where the magnetic field of a magnetic dipole is, 

𝐵d⃗ =
𝜇!
4𝜋𝑟- \

3(𝑚dd⃗ ⋅ 𝑟)�⃗�
𝑟# −𝑚dd⃗ ] 

⇒ 𝑆 =
𝑄

4𝜋𝜖!𝑟-
1

4𝜋𝑟- \
3(𝑚dd⃗ ⋅ 𝑟)𝑟 × 𝑟

𝑟# − 𝑟 ×𝑚dd⃗ ] 

⇒ 𝑆 =
𝑄𝑚

16𝜋#𝜖!𝑟5
(�̂� × �̂�) 
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⇒ 𝑆 = ~𝑆~ =
𝑄𝑚 sin 𝜃
16𝜋#𝜖!𝑟5

 

(b) It is given that 

𝐿 = 𝐾𝜇!1𝑅2𝑄3𝑚4 

[𝐿] =
𝑀𝐿#

𝑇 , [𝜇!] =
𝑀𝐿
𝑄# ,

[𝑅] = 𝐿, [𝑄] = 𝑄, [𝑚] =
𝑄𝐿#

𝑇  

By dimensional analysis, we have 

[𝑄] :	− 2𝛼 + 𝛾 + 𝜂 = 0 

[𝑀]:	𝛼 = 1 

[𝐿]:	𝛼 + 𝛽 + 2𝜂 = 2 

[𝑇]: −𝜂 = −1 

With 5 equations, we can get 

𝛼 = 1, 𝛽 = −1, 𝛾 = 1, 𝜂 = 1 

And 

𝐿 = 𝐾
𝜇!𝑄𝑚
𝑅  

(c) The angular momentum density of the EM field is 

𝑙 = �⃗� ×
𝑆
𝑐# =

𝜇!𝑄𝑚
16𝜋#𝑟6 �̂� ×

(�̂� × �̂�) = −
𝜇!𝑄𝑚 sin 𝜃
16𝜋#𝑟6 �̂�7 

Because of symmetry, the total angular momentum has only the 𝑧-component, with magnitude  

𝐿8 = � 𝑑𝜙
#9

!
� sin 𝜃 𝑑𝜃
9

!
� 𝑟#𝑑𝑟
:

;
Y
𝜇!𝑄𝑚 sin 𝜃
16𝜋#𝑟6 Z sin 𝜃 =

𝜇!𝑄𝑚
16𝜋# � 𝑑𝜙

#9

!
� sin- 𝜃 𝑑𝜃
9

!
�

1
𝑟# 𝑑𝑟

:

;
 

� sin- 𝜃 𝑑𝜃
9

!
= −� (1 − cos# 𝜃)𝑑 cos 𝜃

9

!
= −Ycos 𝜃 −

1
3 cos

- 𝜃Z�
!

9

= −Y−2 +
2
3Z =

4
3 

⇒ 𝐿d⃗ =
𝜇!𝑄𝑚
6𝜋𝑅 �̂� 

(c) As the electrons are being injected on the sphere, the charge 𝑄 decreases, causing the electromagnetic 
angular momentum decreases. By the conservation of angular momentum, we have 

𝜇!𝑄𝑚
6𝜋𝑅 = 𝐼𝜔 +

𝜇!(𝑄 − 𝑁𝑒)𝑚
6𝜋𝑅  
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⇒ 𝜔 =
𝜇!𝑁𝑒𝑚
6𝜋𝑅𝐼  

The angular speed of the sphere is 𝜔 = $"<.=
>9;?

 

 

[Solution 2] In an alternative interpretation of the question, the charges are assumed to be distributed 
uniformly inside the entire sphere. 

(a) The electric field and magnetic field inside the sphere are 

𝐸d⃗ =
𝑄�⃗�

4𝜋𝜖!𝑅-
 

𝐵d⃗ =
2
3 𝜇!𝑀

dd⃗ =
2
3 𝜇!

𝑚dd⃗
4
3 𝜋𝑅

-
=
𝜇!𝑚
2𝜋𝑅- �̂� 

(The derivation of the 𝐵d⃗  field inside the magnetized sphere is in the end). 

The Poynting vector inside the sphere becomes, 

𝑆0, =
𝐸d⃗ × 𝐵d⃗
𝜇!

=
𝑄𝑚𝑟

8𝜋#𝜖!𝑅>
(�̂� × �̂�) 

(c) The total angular momentum consists of 2 parts, 

𝐿d⃗ = 𝐿d⃗ @A( + 𝐿d⃗ 0,, 

where the angular momentum outside the sphere is 

𝐿d⃗ @A( =
𝜇!𝑄𝑚
6𝜋𝑅 �̂� 

Inside the sphere, we have 

𝑙 = 𝑟 ×
𝑆
𝑐# =

𝜇!𝑄𝑚𝑟#

8𝜋#𝑅> �̂� × (�̂� × �̂�) =
𝜇!𝑄𝑚𝑟# sin 𝜃

8𝜋#𝑅> �̂�7 

𝐿d⃗ 0, = � 𝑑𝜙
#9

!
� sin 𝜃 𝑑𝜃
9

!
� 𝑟#𝑑𝑟
:

;
\−

𝜇!𝑄𝑚𝑟# sin 𝜃
8𝜋#𝑅> ] sin 𝜃 = −

𝜇!𝑄𝑚
15𝜋𝑅 �̂� 

⇒ 𝐿d⃗ (@( =
𝜇!𝑄𝑚
6𝜋𝑅 �̂� −

𝜇!𝑄𝑚
15𝜋𝑅 �̂� =

𝜇!𝑄𝑚
10𝜋𝑅 �̂� 

(d) As the electrons are being injected on the sphere, the charge 𝑄 decreases, causing the electromagnetic 
angular momentum decreases. By the conservation of angular momentum, we have 
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𝜔 =
𝜇!𝑁𝑒𝑚
10𝜋𝑅𝐼  

Appendix: Derivation of 𝑩dd⃗  field inside a uniformly magnetized sphere. 
 
Let’s consider a static magnetized sphere without electric current. Ampere’s law gives 

∇dd⃗ × 𝐻dd⃗ = 0, 
where 𝐻dd⃗ = BC⃗

$"
−𝑀dd⃗  is the auxiliary field. Mathematically, we know that a curl-free field can be rewritten 

as a gradient of a scaler field 𝜙=, 

𝐻dd⃗ = −∇dd⃗ 𝜙=, 

Where 𝜙= is called the magnetic scaler potential. 

∇dd⃗ ⋅ 𝐵d⃗ = 𝜇!∇dd⃗ ⋅ ^𝐻dd⃗ + 𝑀dd⃗ _ = 0 

⇒ ∇dd⃗ ⋅ 𝐻dd⃗ = −∇#𝜙= = −∇dd⃗ ⋅ 𝑀dd⃗ = 𝜌= = 0.		(inside	the	sphere)			[1] 

where 𝜌= = −∇dd⃗ ⋅ 𝑀dd⃗  is the magnetic charge inside the sphere. However, there is a magnetic surface 
charge on the surface of the sphere, reads, 

𝜎= = �̂� ⋅ 𝑀dd⃗ = 𝑀 cos 𝜃. 

Here, 𝑟 and 𝜃 are sphereical coordinates. One of the boundary conditions at the surface is that the 
tangential component of 𝐻dd⃗  must be continuous, 

⇒ 𝜙=(𝑟 = 𝑅E, 𝜃) = 𝜙=(𝑟 = 𝑅), 𝜃)			[2] 

And the Gauss’ law of magnetic charge gives, 

𝜕𝜙=
𝜕𝑟 �FG;#

−
𝜕𝜙=
𝜕𝑟 �FG;$

= −𝜎= = −𝑀 cos 𝜃			[3] 

In other words, the magnetic charge on the surface of the sphere gives rise to a discontinuity in the radial 
gradient of the magnetic scaler potential at 𝑟 = 𝑅. 

The Laplace equation ∇#𝜙= = 0 can be written in spherical coordinates, 

∇#𝜙= =
1
𝑟#

𝜕
𝜕𝑟 Y𝑟

# 𝜕
𝜕𝑟 𝜙=Z +

1
𝑟# sin 𝜃

𝜕
𝜕𝜃 Ysin 𝜃

𝜕𝜙=
𝜕𝜃 Z +

1
𝑟# sin# 𝜃

𝜕#

𝜕𝜑# 𝜙= = 0 

Since the boundary conditions are independent of 𝜑, we expect 𝜙= = 𝜙=(𝑟, 𝜃) is independent of 𝜑.  

⇒
𝜕
𝜕𝑟 Y𝑟

# 𝜕
𝜕𝑟 𝜙=Z +

1
sin 𝜃

𝜕
𝜕𝜃 Ysin 𝜃

𝜕𝜙=
𝜕𝜃 Z = 0 

Next, we apply the separation of variables 𝜙=(𝑟, 𝜃) = 𝐴(𝑟)𝐵(𝜃), we have 
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𝑑
𝑑𝑟 Y𝑟

# 𝑑
𝑑𝑟 𝐴(𝑟)Z = 𝜆𝐴(𝑟)		𝑎𝑛𝑑			

1
sin 𝜃

𝑑
𝑑𝜃 \sin 𝜃

𝑑𝐵(𝜃)
𝑑𝜃 ] = −𝜆𝐵(𝜃) 

 

 

⇒ 𝑟#𝐴HH(𝑟) + 2𝑟𝐴H(𝑟) − 𝜆𝐴(𝑟) = 0 

Substitute 𝐴(𝑟) = 𝑟,, 

 

The general solution of the Laplace’s equation inside and outside the sphere can be written as 

𝜙=) (𝑟, 𝜃) =�𝐴I𝑟I𝑃I(cos 𝜃)
:

IG!

				𝑓𝑜𝑟	𝑟 ≤ 𝑅 

and 

𝜙=E(𝑟, 𝜃) =�
𝐵I
𝑟IE" 𝑃I

(cos 𝜃)
:

IG!

				𝑓𝑜𝑟	𝑟 ≥ 𝑅 

where {𝐴I , 𝐵I} are constants can be determined by the boundary conditions and 𝑃I(cos 𝜃) is the Legendre 
polynomials.  

By the boundary conditions [2] and [3], we have 

𝐵I = 𝐴I𝑅#IE", 

−
2𝐵"
𝑅- − 𝐴" = 0, 

−
(𝑙 + 1)𝐵I
𝑅IE# − 𝑙𝐴I𝑅I)" = 0.		if	𝑙 ≠ 1 

Solving the algebraic equations, we have 

𝐴I = 𝐵I = 0.				for	𝑙 ≠ 1 

and 

	⇒ 𝐵" =
𝑀𝑅-

3 		𝑎𝑛𝑑	𝐴" =
𝑀
3  

The scaler potentials are: 

𝜙=) (𝑟, 𝜃) =
𝑀𝑟
3 cos 𝜃 



 

 13 

1 

𝜙=E(𝑟, 𝜃) =
𝑀𝑅-

3𝑟# cos 𝜃 

In the vacuum region outside the sphere, the magnetic field is 

𝐵d⃗ = 𝜇!𝐻dd⃗ = −𝜇!∇dd⃗ 𝜙=E =
𝜇!
4𝜋 \−

𝑚dd⃗
𝑟- +

3(𝑚dd⃗ ⋅ 𝑟)𝑟
𝑟5 ] 

where 𝑚dd⃗ = 6
-
𝜋𝑅-𝑀dd⃗ . Inside the magnetized sphere, 𝐻dd⃗ = −∇dd⃗ 𝜙= and 𝐵d⃗ = 𝜇!^𝐻dd⃗ + 𝑀dd⃗ _ 

⇒ 𝐻dd⃗ = −
𝑀dd⃗
3  

And 

𝐵d⃗ =
2
3 𝜇!𝑀

dd⃗  

 

4. Air Convection in Atmosphere 大气内之空气对流  

(a) [1 point] Consider a horizontal slab of air whose thickness (height) is 𝑑𝑧. If this slab is at rest, the 
pressure holding it up from below must balance both the pressure from above and the weight of the slab. 
Use this fact to find an expression for JK

J8
, the variation of pressure with altitude, in terms of the density 𝜌	

of air.  
(a) [1 分] 考虑一薄块的空气，其厚度(高度)是𝑑𝑧。当这薄块处于静止状态时，从下方施加于薄块

的压強必须平衡于从上面施加于薄块的压強和薄块的自身重量。由此,找出压強随高度变化的表达

式 JK
J8

，答案以空气密度	𝜌	来表示。  

(b) [2 points] Assume that the air is an ideal gas with molar mass 𝑀 and the temperature 𝑇 of the 
atmosphere is independent of height. Then the atmospheric pressure at height z is given by 𝑃(𝑧) =
𝑃(0)𝑒)L8. Find 𝜆. 
(b) [2分] 假设空氣是摩尔质量	𝑀	的理想氣體，而且大气的温度	𝑇	随高度无关。因此，在高度为

	𝑧	的大气压強可以由 𝑃(𝑧) = 𝑃(0)𝑒)L8	表示。 求𝜆。  

In practice, the atmospheric temperature depends on height. If the temperature gradient �JM
J8
� exceeds a 

certain critical value, convection will occur: warm, low-density air will rise, while cool, high-density air 
sinks. The decrease of pressure with altitude causes a rising air mass to expand adiabatically and thus to 
cool. The condition for convection to occur is that the rising air mass must remain warmer than the 
surrounding air despite this adiabatic cooling.  
在实际情况下，大气的温度会随高度变化。当温度梯度 �JM

J8
�	超越一个临界值时，对流就会产生:低

密度的热空气上升，高密度的冷空气则下降。随高度上升而下降的气压，使上升的空气团发生绝

热膨胀，从而冷却。对流发生的条件是:上升中的气团纵然发生绝热冷却，仍须较周围的空气温

暖。  
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(c) [2 points] Assume that the molar heat capacity of air at constant volume is 𝑐+ =

5
#
𝑅. We can show 

that when air expands adiabatically, the temperature and pressure are related by the condition 

𝑑𝑇
𝑑𝑃 = 𝑎

𝑇
𝑃 

Find the constant 𝑎. 
(c) [2 分] 假设空气的定容摩尔热容量为𝑐+ =

5
#
𝑅。由此可证明，当空气绝热膨胀时，温度和压強

满足以下条件 

𝑑𝑇
𝑑𝑃 = 𝑎

𝑇
𝑃 

求常数𝑎。  

(d) [3 points] Assume that JM
J8

 is just at the critical value for convection to begin, so that the temperature 
drop due to adiabatic expansion of the convecting air mass is the same as the temperature gradient of the 
surrounding air. Find a formula for JM

J8
 in this case. 

(d) [3 分] 假设	JM
J8
	正处于对流开始发生的临界值，以致对流空气由绝热膨胀引起的温度下降，等

于周边空气的温度梯度。在此情况下,求	JM
J8
	的公式。  

(e) [2 points] Calculate numerically the critical temperature gradient in part (d). Express your answer in 
K/km.  
Data: The molar mass of the air is 𝑀 = 0.029	𝑘𝑔, 𝑔 = 9.8	m/s#, 𝑅 = 8.31 J/mol/K, 𝑇 = 300K. 
(e) [2 分] 计算(d)部的临界温度梯度之数值。答案以	K/km 为单位。数值:	𝑀 = 0.029	kg, 𝑔 =
9.8	m/s#, 𝑅 = 8.31 J/mol/K, 𝑇 = 300K。  

 

Solution: 

(a) Consider a horizontal slab of air whose thickness (height) is 𝑑𝑧 and the cross-sectional area is 𝐴. In 
equilibrium, we have 

𝑃(𝑧)𝐴 = 𝜌𝑔𝐴𝑑𝑧 + 𝑃(𝑧 + 𝑑𝑧)𝐴 ⇒
𝑑𝑃
𝑑𝑧 = −𝜌𝑔 

(b) Using the ideal gas law, 𝑃𝑉 = 𝑛𝑅𝑇, 

𝑃 = 2
𝑚
𝑉5

𝑅𝑇
𝑀 ⇒ 𝜌 =

𝑀𝑃
𝑅𝑇  

Where 𝑀 is the molar mass, 𝑚 is the total mass and 𝑛 is the number of mole of the gas. 

⇒
𝑑𝑃
𝑑𝑧 = −

𝑀𝑔
𝑅𝑇 𝑃 

⇒ 𝑃(𝑧) = 𝑃(0)𝑒)L8 
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Where 𝜆 = N%

;M
. 

(c) Using the 1st law, 

𝑑𝑈 = 𝑑𝑄 − 𝑑𝑊 

For 1 mole of gas during the adiabatic expansion, 𝑑𝑈 = 𝑐+𝑑𝑇 =
5
#
𝑅𝑑𝑇, 𝑑𝑄 = 0 and 𝑑𝑊 = 𝑃𝑑𝑉 

⇒
5
2𝑅𝑑𝑇 = −𝑃𝑑𝑉 

Ideal gas law 𝑃𝑉 = 𝑅𝑇 implies 

𝑃𝑑𝑉 + 𝑉𝑑𝑃 = 𝑅𝑑𝑇 

⇒ −
5
2𝑅𝑑𝑇 + 𝑉𝑑𝑃 = 𝑅𝑑𝑇 

⇒
7
2𝑅𝑑𝑇 = 𝑉𝑑𝑃 

⇒
𝑑𝑇
𝑑𝑃 =

2𝑉
7𝑅 =

2
7
𝑇
𝑃	 

Therefore, 𝑎 = #
O
. 

(d) Finally, 

𝑑𝑇
𝑑𝑧 = Y

𝑑𝑇
𝑑𝑃Z Y

𝑑𝑃
𝑑𝑧Z =

2
7
𝑇
𝑃	Y−

𝑀𝑔
𝑅𝑇 𝑃Z = −

2𝑀𝑔
7𝑅  

(e) Critical temperature gradient is 

𝑑𝑇
𝑑𝑧 = −

2𝑀𝑔
7𝑅 = −9.8	K/km 

 

 


