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1. [10 points]

A uniform thin rigid rod of mass m is supported by two rapidly rotating rollers, whose axes are separated
by a fixed distance a. The rod is initially placed at rest symmetrically as shown in Fig.1a.

[T Ry m BB ANIPERF P DMREEEFEAYVRESHE - P INREIRVEIZIER R a - TTROIA0E la
BT RSRIE. ©

(a) [5 points] Assume that the rollers rotate in opposite directions as shown in Fig.1a. The coefficient of
kinetic friction between the rod and the rollers is u. Solve for the displacement x(t) of the center C of the
rod from roller 1 assuming x(0) = x, and x(0) = 0.

(a) [5 7] BBCRE DA ETT e - 40 1a s » AR Z [ RSN S E0T 1 - Ri%x(0) =
xo F1x(0) = 0 > >KAFduLy C MR 1 BERIALFE x(0) -

(b) [5 points] Now consider the case in which the direction of rotation of the rollers are reversed, as shown
in Fig.1b. Find the displacement x(t), again assuming x(0) = x, and x(0) = 0.
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Solution:
(a) The free-body diagram of the rod is:




For equilibrium along the vertical direction, we have
N; + N, =mg
aN, = xmg

= N; =(1—§)mg

X
=> N, =Emg

The kinetic friction forces are

fi=uNy and f, = uN,
With directions as shown in the figure.
Newton’s 2" law gives

mi = f, — f; = =2 (a - 22)

Define ¢ = 2x — a, we have

. 2ug
¢ = —Tf
is a SHM.

where w = ’2%
a
= x(t) = Acos(wt + ¢p) + 3

Att =0, x(0) = x, and x(0) = 0, we have

= &(t) = 2x(t) —a = 2A cos(wt + ¢)

(b) By reversing the direction of rotation of the rollers, we have
" umg
mi = f, — fi =—=(2x—a)

Define ¢ = 2x — a, we have

. 2
§=2d¢

= &(t) = 24e®t + 2Be ¢

2
where w = ’%

By the initial conditions, we have A = B and

a
= x(t) = Ae®t + Be ' + >




0) =xy=24 2 A—1 ¢
X()—XO— +E$ —E(XO__)

2
a a)t_|_e wt
=>x(t)=(x0—§)— 5= ( —— coshwt+§
a
x(t)— —— cosh E

2. [10 points]
A cylindrical tank filled with liquid is placed on the side of the table. A small hole is opened on the wall
of the tank near the bottom. The liquid flows out horizontally through the small hole, and hits at point P

on the floor. The height of the table is H, the area of the hole is % (assume k > 1) of the area of the

bottom of the tank, and the initial height of the liquid in the tank is h,. Find the velocity v at which the
drop point P moves along the floor and the time T required for all liquid to flow out of the tank.
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Solution:

(a) Assuming the when the height of the liquid inside the cylindrical tank is h, the drop of the water
surface inside the tank has speed u and the liquid coming out from the hole has speed V. Since the
volume of the liquid is unchanged, we have

V =ku

Bernoulli’s equation gives

1 1
2PV =po +pgh+ 7 pu

p0+2
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The horizontal range of the liquid is

2H  k/2gh 2H  2kVhH
s=Vt=V X |[—= X |—=
g Vkz-1 g Vk?-1

Therefore the position of P depends on the liquid height h. The speed of P is

ds  2kvH d kWH 1dh_ WH uw _ VH V. _ ko
vV=—= — = - = — = =
At~ ViZ—1dt = Vie—ivhdt Vk2—1ivh Ykz—1ivh Kk -1V

(b) There are 2 different ways to find T.
Method 1:

Initially, the position of P is

2k JhoH
0 1

Notice that v is independent of h, point P moves with the constant speed. When the tank is empty, P
should be under the tank.

SO _ Zkf\[h,oH kz - 1 1 _ Zho(kz - 1)
v Vk2—1 k [2gH g

Method 2:

The speed of the water surface reads,

dh J2gh
a- T Vet
:j—%:— %dt
= 2 hoz\/kzz—?T
Lo [Zho(k?—1)

g
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Remark:

The calculation above is based on the assumption that k >> 1 and the flow is approximately steady (i.e.
the velocity of the fluid inside the tank doesn’t change in time). In fact, we can generalize the calculation
by considering the non-steady flow of the fluid.

We first consider the potential energy of the fluid inside the tank when the height of the fluid is A,

where u is the velocity of the fluid inside the tank and V is the velocity of the fluid coming out from the
hole (u = -).

Next, the total kinetic energy of the fluid inside the tank is (N.B. because of the conservation of
mass/continuity equation, the speed of the fluid inside the tank will be the same),

pu? 1 Ah__
Kiank = TAh = E'DFV

dKiane  1pAdh Ah dV 1pA . pA dv
>~a 2eax’ TPeVaT el teVa

Finally, the rate at which kinetic energy exits the tank via the hole is

dKexit _ dmexit V2 _ pA V3
dt — dt 2 k 2

Conservation of energy implies,

0

au thank dKexit
atTae TTar o
-2 h—(l 1)V2+2th
In=\ e k' dt
We can change the independent variable form t to h using the chain rule in calculus,

v _dvdh av _vdav 1dv?
G- and W TR T Tk an
We obtain the ODE,

2h—(1 1)1/2 L
gn= 2 k2" dh

dv? &
(k2 1V = —9 k2
= T (k= —1) A 2gk




Introducing an integrating factor f such that

d o~ d 2 2df dVZ_ 2 vz _ )
df_ 5 i
ﬁ—dh——(k 1)h

= f = hl—k2

The ODE can be rewritten as
d 1-k27172 251-k?
an (h V ) = —2gk-h

Integrating the equation with the initial condition is that V' (hy) = 0, we have

V(h) =2gh |[——5—

The plot of the solution is shown below.

For the limiting case in which k — oo (narrow opening) and k — 1 (free fall of water), the solution
reduces to

V(hk=1)=29(h, — h)




V(h,k - ) =,/2gh

which is equal to our result obtained in part (a) in the limit of k — oo.

sk sk ke sk sfe sk sk sk s ske sk s sk ke sk sfe s sk sk sie sk sfe sk sk sk sk sk s sk skeskeske sk sk

3. [10 points]

A uniformly magnetized iron sphere of magnetic moment 7 = mZ and radius R is suspended from the
ceiling by an insulating thread. A total charge Q > 0 is uniformly distributed throughout the iron sphere.
We use the Cartesian coordinate where the origin is located at the center of the sphere, xy-plane is the
horizontal plane and z-axis is pointing upward.

HEFE ) m o= m2 HPEEN R BUHSREABERERIE I 4 5 A B RACIR b - S HfQ > 0 3959011
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The magnetic field at position r due to a magnetic dipole 71 at origin is given by
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(a) [3 points] The Poynting vector S () at point 7* is defined as
(a) [3 73] BeEIIE R ES (DTS 7 FANE SO

S@) =

-e

1 = -

—E X B,

Ho
where E and B are the electric and magnetic fields at point 7. Calculate the magnitude of the Poynting
vector § (7) both inside and outside of the iron sphere.
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(b) [2 points] In fact, the system has a non-zero angular momentum due to the electromagnetic field. The
angular momentum L depends on the size of the sphere R, the charge Q and the magnetic dipole moment
m on the sphere, and the physical constant y,. We shall write L = KuSR#QYm" where K is a
dimensionless constant. Find «, 5,y and 1 using dimensional analysis.

(b) [2 73] bR b > T HEEIAHIEE - ZANASEIES - AR L AU THERVFE R » 3K E
YRR Q FIREIRARAE m LUK AL o « BATIFERL L = Ku§RPQVm™ » Hrp K R RIHEL -
EHENS i a > By FIn -

(c) [3 points] To calculate the total angular momentum L of the system, it is given than the angular
momentum density [angular momentum of the EM field per unit volume] Z(?) of the electromagnetic field

at a point 7 is
(©) [357) N THERGH R AE L BATES 7 AR E A BRI [FREATE S ARy
AR () &
- 1 -
l(?) = ;F XS
where c is the speed of light. Calculate the total angular momentum L of the system.
Hep o @t - TRAZHIEAZIEL -

(d) [2 points] Electrons are injected into the iron sphere along the z-axis. The total amount of the charge in
the sphere will reduce and the sphere will rotate. Find the angular speed of the sphere after the injection of
N electrons. Assume that the moment of inertia of the iron sphere is I and each electron has charge —e.

(d) [2 73] H50t z R ARRBK » BRI HYE T B/ D - F HERIARFIES? - it NRIRTEATE
BRAVAZRE o BORBEREYITIEIED [ 3 B BT I HEED) —e -

Solution:

[Solution 1] Since iron is a conductor, the charges will redistribute on surface of the sphere.
(a) The electric field inside the sphere is zero and the electric field outside is

Q

E
4meyr3

Hence the Poynting vector inside the sphere is S = 0. Outside the sphere,

=

- 1 —
S=—EXB
Ho

where the magnetic field of a magnetic dipole is,

Uo (3(171’-17)77 _)>
-m

B
4mr3 r2

L3 Q 1 (3(m-PHrxr , |
= —7 X
4dmeyr3 4mr3 r? rem
- Qm R
>5S=—7-—-(£xX
S 16m2e,r> (Zx7)
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(b) It is given that

L = Ku$REQvmn

10 =202 o) = 22 181 = 1,101 = 0,m) = 2
By dimensional analysis, we have
[Q]: —2a+y+n=0
[M]:a =1
[Ll:a+B+2n=2
[T]:—n = -1
With 5 equations, we can get
a=1, g =-1, y=1, n=1
And
m
L= K.Uog
(c) The angular momentum density of the EM field is
Z:?xi:ww(zxm:—w%
c? 16m?r+ 16m2r4

Because of symmetry, the total angular momentum has only the z-component, with magnitude

2m m ® msin @ m (27 ™ *1
L, =f dgbf sin@def r2dr (%) sinf = ,quz dqbf sin39d9f —dr
. . 9 l16m“r 16m- J, . i 7

1

--(2+3)=3
o 3) 3

s s 1
f sin® 0 df = —f (1 —cos?0)dcosf = — (cos 0 — §cos3 0)
0 0

Ho@m

>L=
67'[RZ

(c) As the electrons are being injected on the sphere, the charge Q decreases, causing the electromagnetic
angular momentum decreases. By the conservation of angular momentum, we have

poQm o+ to(Q@ — Ne)m
6TR 6mR
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The angular speed of the sphere is w = —#2:;?

[Solution 2] In an alternative interpretation of the question, the charges are assumed to be distributed
uniformly inside the entire sphere.

(a) The electric field and magnetic field inside the sphere are

- r

o9

4meyR3
. Z = Z m Uom
B:— M:— = A
3.110 SMO%T[R3 27TR3 z

(The derivation of the B field inside the magnetized sphere is in the end).
The Poynting vector inside the sphere becomes,

g _Exﬁ_ Qmr
Ty, 8m2eyR®

A

(Fx2

(c) The total angular momentum consists of 2 parts,
L= Lout + Lin'
where the angular momentum outside the sphere is

- Hon2
out — 67TR

Inside the sphere, we have

- LS mQmirr, - ueQmr?sing
=T 2= gupe " X P XD =g ape %
21 T co 2 .-
= ) UoQmresin@\ UoQm
Lin=J;) dgbj; sdeHL TZdr<_W>Sm9=_15nRz
N _.Uoné_.qumﬁ_qumZA
©t~” 6nR © 15mR°  10mR

(d) As the electrons are being injected on the sphere, the charge Q decreases, causing the electromagnetic
angular momentum decreases. By the conservation of angular momentum, we have
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Appendix: Derivation of B field inside a uniformly magnetized sphere.

Let’s consider a static magnetized sphere without electric current. Ampere’s law gives
VxH=0,

where H = ui — M is the auxiliary field. Mathematically, we know that a curl-free field can be rewritten
0

as a gradient of a scaler field ¢,,,
H=~V¢n,
Where ¢,, is called the magnetic scaler potential.
V.5 = uo¥- (H + M) = 0
>V-H=-V2¢, =—V-M = p,, = 0. (inside the sphere) [1]

where p,, = —V - M is the magnetic charge inside the sphere. However, there is a magnetic surface
charge on the surface of the sphere, reads,

amzf-M=Mc059.

Here, r and 0 are sphereical coordinates. One of the boundary conditions at the surface is that the
tangential component of H must be continuous,

= ¢m(r = R+'9) = ¢m(r =R",0) (2]
And the Gauss’ law of magnetic charge gives,

0dpm
or

_9%m
r=R* or

= —0, = —Mcos8 [3]

=R~

In other words, the magnetic charge on the surface of the sphere gives rise to a discontinuity in the radial
gradient of the magnetic scaler potential at r = R.

The Laplace equation V2¢,,, = 0 can be written in spherical coordinates,

aqu) 1 022 b =0

a (.
—(sme 00 +rzsin296(p

o ()
=25 \" 5 m) ¥ 2sina o0
Since the boundary conditions are independent of ¢, we expect ¢,,, = ¢,,, (1, ) is independent of ¢.

:>6<28 )+1 6(_98¢m)_0
o\ 3% ) T sngae S0 5g ) T

Next, we apply the separation of variables ¢,,,(r,0) = A(r)B(68), we have

11



d(29, )—AA i g% BON _ g
dr(r ar A = A4(r) and g g | sinf—5= | = —AB(6)

=>12A4"(r) + 2rA'(r) —2A(r) =0

Substitute A(r) = r™,

The general solution of the Laplace’s equation inside and outside the sphere can be written as
Om(1,0) = ZAlrlP,(cos 0) forr <R
1=0

and

(0]

l

B
ot (r,0) = ZmPl(cos ) forr=R

=0

where {A;, B} are constants can be determined by the boundary conditions and P;(cos 8) is the Legendre
polynomials.

By the boundary conditions [2] and [3], we have
Bl — Al R21+1’

2B,
g A=l

1+ 1B,

e~ LR = 0. if L% 1

Solving the algebraic equations, we have
Al=Bl=0. fOI‘lil

and

The scaler potentials are:

Mr
(1, 0) = — cos 6

12



3

cos @

Pm(r,0) =

3r2

In the vacuum region outside the sphere, the magnetic field is

B = poH = —poVopm =E(—T—3+T—5)

where m = %nR3]\7. Inside the magnetized sphere, H= —ﬁ(]bm and B = o (17 U ]\7)

g M
>H=——
3

And
- 2 —
B :§MOM

4. Air Convection in Atmosphere XS N Z 2SR

(a) [1 point] Consider a horizontal slab of air whose thickness (height) is dz. If this slab is at rest, the
pressure holding it up from below must balance both the pressure from above and the weight of the slab.

Use this fact to find an expression for Z—I;, the variation of pressure with altitude, in terms of the density p
of air.

(a) [1 2] FE—HHHZES > HIER(ER)Rdz ° HZCHTATFR (RS - AR 550 T-#sh
AR M L EHE IS R R H BB & - i P R b = S bRk
X 5 BRLZESHERE p KR -

(b) [2 points] Assume that the air is an ideal gas with molar mass M and the temperature T of the
atmosphere is independent of height. Then the atmospheric pressure at height z is given by P(z) =
P(0)e~**. Find A.

(b) [2 73] B ZZREE/RFTE M AVERAREAS - T ARSHVERE T SR - Witk > &
z PR SESRA LA P(2) = P(0)e ™ R = KA e

. . . . d
In practice, the atmospheric temperature depends on height. If the temperature gradient |d—i| exceeds a

certain critical value, convection will occur: warm, low-density air will rise, while cool, high-density air
sinks. The decrease of pressure with altitude causes a rising air mass to expand adiabatically and thus to
cool. The condition for convection to occur is that the rising air mass must remain warmer than the
surrounding air despite this adiabatic cooling.

ESIRERT » ASHVRRE SRS EL - WRRERE |57 @t — MERER - s
WREAIZES, LT - RS2 SN FIE - BRSRE FAH FREROSUE - F Tz SEIR 4
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(c) [2 points] Assume that the molar heat capacity of air at constant volume is ¢, = ER. We can show
that when air expands adiabatically, the temperature and pressure are related by the condition

dr T
ar_ 4p

Find the constant a.
(c) [2 B] RIEZ=SHIERERINEE Ny, = ;Ro FHIEL AT IR - B2 St RKES - SRR
e Ll TS

KE#a -

(d) [3 points] Assume that d—: is just at the critical value for convection to begin, so that the temperature
drop due to adiabatic expansion of the convecting air mass is the same as the temperature gradient of the

surrounding air. Find a formula for % in this case.
(d) [8 1] ﬁii&i—:ﬁ%?w SR M IGE - LB ZE SR iR S RER R N - &
FRBZESHIRIERRE « IR Tk I AR -

(e) [2 points] Calculate numerically the critical temperature gradient in part (d). Express your answer in
K/km.
Data: The molar mass of the air is M = 0.029 kg, g = 9.8 m/s? R = 8.31 J/mol/K, T = 300K.

(e) [2 D] IR (DEPRVIEFUREREE 2 0(E - FZELLK/km N #fr - £{H: M = 0.029kg, g =
9.8m/s?, R = 8.31 J/mol/K, T = 300K -

Solution:

(a) Consider a horizontal slab of air whose thickness (height) is dz and the cross-sectional area is 4. In
equilibrium, we have

dpP
P(z)A = pgAdz + P(z+ dz)A = 2, = P9

(b) Using the ideal gas law, PV = nRT,

RT MP
=)=

Where M is the molar mass, m is the total mass and n is the number of mole of the gas.

dpP Mg
5 —=——
dz RT

= P(2) = P(0)e™**

14



Where 1 = 29,
RT
(c) Using the 1 law,
dU =dQ — dw

For 1 mole of gas during the adiabatic expansion, dU = ¢, dT = ngT, dQ = 0and dW = PdV

5

Ideal gas law PV = RT implies

PdV +VdP = RdT

5
= _ERdT + VdP = RdT

7
= ERdT = VdP
dar 2V 2T
> — = — = ——
daPp 7R 7P
Therefore, a = %
(d) Finally,

dT_(dT)(dP)_ZT ( Mgp)_ 2Mg
dz \dP/\dz) 7P\ RT ) 7R
(e) Critical temperature gradient is

dT_ 2Mg_ BT
T g - okl




