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Please fill in your final answers to all problems on the answer sheet.
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At the end of the competition, please submit the answer sheet only. Question papers and working sheets will not be
collected.
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1. [10 points] Consider a satellite that has a shape of a plate of surface area A and thickness d <« V/A. The satellite
can convert solar energy into electrical energy and charge the onboard batteries making use of the temperature
difference. The solar energy flux density [solar power per unit area] at the position of the satellite is S and the
satellite is facing towards Sun. Assuming that the emissivity of both sides of the satellite is € and the temperatures
of the satellite on two sides are T; and T, respectively and ¢ is the Stefan-Boltzmann constant.
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(a) [2] What is the net heat flux [energy per second] absorbed by the bright side (the side facing towards Sun) of
the satellite?

(a) [2] PEAYZEE (HEDKIHA—@) B A EE [FPeE] 2%/ 7

(b) [1] What is the net heat flux [energy per second] released from the dark side of the satellite?
(b) [1] MBS ERRAY A P uaE [FeEE] 2%/ 7

(c) [1] What is value of the emissivity € to get the theoretically maximal charging power P, g, ?
(c) [1] FJ1SEEIE ERRTCHINR Prax FVASHR € (IEZEZ /D ?

(d) [3] Find a condition for the temperature T; in order to get the theoretically maximal charging power Py,
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provided by the satellite. Express the condition in term of the dimensionless variable x = UTT{L You don’t need to
solve the equation in this part.
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(e) [3] What is the theoretically maximal charging power Py, provided by the satellite? Calculate the numerical
value of %. Your answer should be correct to at least 2 significant figures.
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Solution:
(a) .
01 = €A(S — oT{)




(b) ,
Q, = €dAT,
(c) The power is given by
P=Q1—Q2:€A(S—0Tf—JTf) 1)

For maximal power, the satellite should be a Carnot engine,
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Sub. Into eqtn (1),
S 4/3
P = €A(S — oT{ — oTy) = 6A<S—JT14 —o(——Tf) )
oT;
Obviously, we can get maximal power if € = 1.

4
(d) Define x = %, we have
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4
P 1—x\3 1— x)4/3
male_x_( >:1_x_¥

We can get max. power P if x satisfies the following equation:

1 4
d (Pmax) . 4(1-x)3 (1-x)3
dx\ AS ] 3 x1/3 3x4/3

(e) We can solve the equation numerically and we get:

x = 0.751
The corresponding value of power is
Pmax
— =0.077
AS

2. [10 points] Binary-sun solar system: Consider a binary pair of identical suns of mass M orbiting in the x — y
plane in an orbit centred at the origin. The gravitational constant is G. Now add a planet of mass m with an initial
condition on the z axis above the center of mass of the two suns and with a velocity along the z direction. By the
symmetry of the system, the small planet will remain on the z axis, suns will have equal z coordinates and the
center of mass of two suns will also remain on the z axis.
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We use the Cartesian coordinates to describe the dynamics of the system: the coordinate of the planet (0,0, u), and
the coordinates of two suns are (+R cos 8,+R sin @, Z).
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(a) [0.5] What is the total kinetic energy, T, of the system? Express the answer in terms of R, 8, Z, u and their time
derivative.

(a)[0.5] RANSEAEE T 2%V ?H R, 0,Z,u RENEBSHRTEE -

(b) [0.5] What is the total potential energy, V, of the system? Express the answer in terms of R, 8, Z, u and their
time derivative.

() [0.5] RAEMNEHBEEV 22V ?2H R 0,Z,u RENEBSHETREE -

(c) [0.5] What is the total linear momentum, P, of the system? Express the answer in terms of R, 8, Z, u and their
time derivative.

(©) [0.5] REMEEMHMEP 22V 2B R 0,Z,u RENBSEHRETRESE -

(d) [0.5] What is the total angular momentum, L, about the z axis of the system? Express the answer in terms of
R, 0, Z,u and their time derivative.

[0S RTFRFE - HNEAMEL @ZV?H R 0,Z,u RENBSHERER -

From now on, we introduce the dynamical variables q(t) = u — Z and the center of mass coordinate of the system

o) = mu+2Mz
m+2M
MIMEFIR » BAIBIANNELZZEq(t) = u — Z MBFBEOLER Q@) = "””ZMZ' o
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(e) [2] Find the equation of motion for q(t). Express your answer in terms of §, ¢, R and given physical parameters.

(e) [2] #tt q(t) WEBENATE ° A G, q, R AENMIESHRAMMNESR °

(f) [2] Find the equation of motion for R(t). Express your answer in terms of R, R, q, L and given physics
parameters.

(f) [2] K R(t) BEBEh 52 B R R, q, L MIAERMIESHTAMNEE -

(g) [2] In the limit of small planetary mass m << M we can ignore the effect of the planet on the motion of the suns.
Find the explicit solution for the motion of the suns R(t) for orbits with small eccentricity € < 1. Write your




solution as circular motion plus a term proportional to e, i.e. R(t) = Ry + €R;(t) where Ry, is the radius of the
circular orbit. You can assume the initial condition R(0) = Ry (1 + €).
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(h) [2] Obtain the equation of motion for q(t) in the limit m <« M. You can see that q(t) is a nonlinear oscillator
driven by a nonlinear force term.

(h) [2] 3K q(t) FEWBRM « MESRBENEE < IRATAE R q(t) B— T HIFEIEN DRI EL TR S8 ©

Solution:
(a) The total kinetic energy is

) ) L1
T = MR? + MZ? + MR?6% +§mu2

(b) The total potential energy is

(c) The total linear momentum is
P =mi+2MZ
(d) The total angular momentum is
L = 2MR?§
(e) We can rewrite u and Z in term of g and Q,

2M
m+ 2M

u=0Q+ q

The EOM for the planet is

2GMm

MU= "Rz + 23721

Since
2M

m+ 2M

q

u=0+ qg=>1i=

m+ 2M

2mM 2GMm
= = —
m+2M1” TRz + g2

. 2GMm
= Hq = (RZ + q2)3/2 q




where the reduced mass of the system u is defined by:
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(f) The total energy can be rewritten as,

2R Rt -2
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E=T+V:MR2+MZ2+MR292+§mu2—
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1 1 .. GM? 2GMm
E = MR? + E(m +2M)Q? + Euqz + MR?6? —

) +MR292+1 (.+ m ')2 GM? 2GMm
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E=MR2+§(m+2M)Q2+
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GM? 2GMm

2R /R2+q2

p? 2 2 1 .,  2GMm

- MR 4 R — e
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=>FE

where the momentum and angular momentum

2M

, : . 2M : : :
p—mu+2MZ—m(Q+mq)+2M(Q—mq)—(m+2M)Q

L = 2MR?6
are conserved.
The constant energy gives
L oo amri+ SR Lkt g+ — M (2RR + +2q0) = 0
dt 2R?2 " 2MR3 (R? + qz);
(o =i+ ) g =
R 12 . GM? N 2GMmR
2MR3 ~ 2R2 (R? + qz)%
() In the limit >~ — 0,
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The orbit, R(t) = Ry + €R,(t),
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2€ .. 1> 3R, N G 2eR, <Ge>
FY L e = 1
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= = — —
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The radial coordinate of the suns are

Ri(t)=Ry[ 1+ A GMt+¢ Ro| 1+ GMt
= € COS — = € COS —_—
! 0 4R} 0 4R}

(h) In the limit m < M, p = m and
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Finally, we obtain the EOM for q(t),

. 2GMm 6GMmR3e GM
mq + 39 — =< COS Wt =0
Rg+aD2  ((RE+q22) 0

The dynamics of this system given by the EOM for q(t) turns out to be complex and chaotic even in the limit m <«

M. If you want to learn more about the complex dynamic (chaos) of this system, you can search the “Slitnikov
Problem” in the internet.

3. [10 points] A massless rod can rotate without friction about the pivot point at its center. Light, propagating as a
plane wave, propagates from left to right, along the x axis. The electric field of the light is given by




3.[10 3] —IRFEFRERIFRIUGEPORIRMRITE RIS, - FEICKG x HMZERAERE - JEhY
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E(x,t) = Eyy cos(kx — wt)

where k = k% and Ej is a real number. The angle between the rod and J is denoted by 6.

Heh k= k% B E, A - 771 9 2 MAER 0 &% -

Cantered at the ends of the rod are disks, each with one side perfectly mirror with 100% reflection and the other
side with 100% absorbing. The disks are oriented so that light in the upper part of the rob (above the pivot) always
strikes an absorptive surface, while in the lower part, it strikes a reflective surface. Each of the disks have mass m
and radius r. Assume that the distance R from the pivot to the center of each disk satisfies R > 7.

EmiEERE - 8 TREEN—MZE 100% REEITERE > 5—M 100% RUT - BIZ/7 EEST L
B8 (RHL7) 89S RREIZIRIRE - METE > ERHEIRSE - 8TEENREI m > FE N -
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The Poynting vector, which describes the energy flux density (i.e. the energy per unit area per unit time) is given by

Wi EBERE (ASRAUNEESRUERNEESE) NIFESEXEA TS
- 1 - —
S=—|(E XB),
Uo ( 8 )

where (i is the vacuum permeability. The momentum density p carried by the EM wave is

Hep py REZEHMSE - HRIEFNERE p N

where c is the speed of light in vacuum.

Hep c ERZEPHIEER ©

(a) [1] What are the frequency f, wavelength A, and magnetic field B (x, t) of the light?
(a) [1] FEAISTER £~ A< A AIREAS B (x, t) DRIZHA?

(b) [1] What is the time-averaged Poynting vector of the incident light?
(b) [1] ABIFEHIRT B IR ENSE R E 2T A ?

(c) [6] What is the total torque which is delivered by the light to the system of rod plus disks around the pivot point
at a given angle 68? What is the average torque over a full rotation of the rod?

(c) (6] EAEAE 6 T » NEFFESBMREIITINEZARNCHER S ? et —BT9HER

202

(d) [2] Find the average angular acceleration of the rod over a revolution.

(d) [2] KATHesE—EBRFI9AMERE -
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Solution:
_© g c_m B o _Fog _
@f =, l—f— —and B(x, t) = —*2 cos (kx — wt)

b) E and B are perpendicular and in phase. The time average of cos? wt is l, so that
( perp p g >

_ E
 2cp

(s)

(c) The force exerted on the disk in the direction normal to its surface is given by the total momentum per second
transferred by the light in this direction. The momentum transferred per unit area per second is p,,c cos 8 =

pc cos? B, where p,, is the component of momentum density of the wave along the normal to the disk surface. The
total momentum transfer per second to the absorbing disk (i.e. the force) is then

S
Fups = (pc cos? 0)(nr?) = zm‘z cos? @ = Eimr? cos? 6

2¢%pg
For the reflecting surface, the corresponding total momentum transfer is twice as much,

Frep = mEénrz cos? @

(d) The torque is given by the sum of 7 X F. The net torque is

7= Eintr?R cos? 6z

2c?pq

Taking time average over one full rotation in 0,

() =

E?mtr?Rz
T, oMr°“RZ

(e) Since T = I where [ is the moment of inertia of the system about the pivot. In the limit R >> r, we have [ =
2mR? and




E3mr?

- 8mRc?u,

(0)

4. [10 points] A vertical, insulated and sealed cylinder with a cross-sectional area A, and an insulating piston of
mass m inside, whose thickness is negligible compared with the length of the cylinder. At the beginning, the piston
is fixed in the center of the cylinder, which divides the cylinder into two air chambers with the same length [, as
shown in the figure. Assume that the upper and lower gas chambers of the cylinder each contain n moles of
monatomic ideal gas with temperature T, . In the following problems, it can be assumed that there is little friction
between the piston and the cylinder wall, and that [ is much larger than the distance traveled by the piston (>> z).
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(a) [4] Release the piston from rest at time t = 0 so that it can move freely up and down. Find the trajectory of the
piston z(t). You can neglect the friction between the piston and the cylinder in the part.

(a) [4] 7ER5ME ¢ = ORFIERRILPREIUEE - (EHAEE M L TES) » HWHIEENIIN 2(t) - EXE D » (RA]
NZRBEEENSELLZ BIAYEE -

(b) [2] How does the temperature of the upper and lower chambers in the cylinder change with the position of the
piston, z?

(b) (2] BEA L TARZEMEENCREEUE - NEEME?

(c) [4] Although there is little friction between the piston and the cylinder, the piston will eventually come to rest
after a long time. Find the position of the piston, z¢, when it rests and the temperature, T, of the gas in the cylinder

at that time. . We can assume that the heat capacity of the cylinder and the piston is negligible, the temperature of
the upper and lower chambers will eventually come to the same because of the movement of the piston and all heat
lost due to friction will transfer into the internal energy of the gas.

(o) [4] BEHREREBMNEZENBEARYD » BEB—RREM[E > BZEFEFILTR - AKEEREF
IERSEOE zr MNERFEAREBIVEE T ? HNRRESENEENRSEF BB  BEAREENE
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Solution:
Cp

(a) The process is adiabatic and we have PVY = C where y = B 5
\%4

l+2z Py

v —

From the figure, we have

P1V1y — PZVZY — POV()y

ﬁpl(l+Z)y:P2(l_Z)y:P0ly

Newton’s 2™ law gives

z z 2P A
—POA(1+YT)+P0A(1—YT)—mg:— 3yz—mg=m2
: 2Py Ay
=7=— I

where w = ’%. The general solution of z(t) is:
g

z(t) = Acos(wt + @) — 2
From the initial conditions z(0) = z(0) = 0,

10



g
:>Acos¢—ﬁz0
—Awsing =0

= z(t) = —%(1 — cos wt)

(b)

:>T1:T0
1+7

-1 2

(c) At equilibrium z,, both chambers have the same temperature T and the pressure satisfies

(P, — P;)A=mg
R nRT nRT A=
(A(l Y zo) A(l— zo)) -

N 1 1 mg 1
l+2zy l—2z, nRT M

By energy conservation, we have
3 3
2 X (EnRTO) =2X (anT) + mgz,

mg
:>T:T0_ﬁ20 (2)

From equations (1) and (2), we can eliminate T and get

1 1 2z, mg mg

l+ZO_l—ZO__lz—z§_nRT:nR(TO_%ZO)

2nR mg
= l2 — 2 = — —_——=
Zp mg Zo( 0 3nRZO)
6nRT, 3
z8 — o glz =0

:>Z():(

3nRT, 3nRTy\* 312
)+ |G +F
S5mg S5mg 5

Since zy < 0, we get
11



B (BnRTO) (3nRT0)2 N 312
o= S5mg S5mg 5

2 2
Note: In the limit when (3:220) » 3L (i. e. o, l), we have

mg

B (3nRTO) . o 312( 5mg )2 1 (3nRT0) 3l2( 5mg )2 _ 31 5mg  mgl?
E 5mg 5 \3nRT,) |~ 2\5mg/ 5 \3nRT,/ =~ 103nRT,  2nRT,
This result is justified if
mgl? 2nRT, nRT,
1zl = 2« 1=« Ut
2nRT, mg mg
is valid at high temperature T, > TZ—“? and z < L.
And the temperature is
2 2 2 2,22
T—4T+ (To)+1(mgl) . 4+1 14 S(mgl) T 1_|_mgl
~ 50 5/ "15\nR/) ~ °\5'5 372\nR/ |~ °° 6n2R2T?

~End of Part 1 &-1 58 ~
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