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All final answers should be written in the answer sheet.
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All detailed answers should be written in the answer book.
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There are 2 problems. Please answer each problem starting on a new page.
HH 28, 518, JURHF—HE.

Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering the questions. No
working sheets for rough work will be distributed.
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If the answer book is not enough for your work, you can raise your hand. Extra answer books will be provided. Your
name and examination number should be written on all answer books.
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At the end of the competition, please put the question paper and answer sheet inside the answer book. If you have
extra answer books, they should also be put inside the first answer book.
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Problem 1: Vacuum bubbles (28 points)
[ 1: A= (28 43)

Is our vacuum stable? We don't know. It's possible that we do not live in the true vacuum. Rather, we live in a false vacuum
which can decay into true vacuum by emerging and expanding bubbles. To describe such a possibility, we will make use of a
space-time dependent "scalar field" ¢ (t, x, y, z), which takes a real value at every space-time point. (Similar to height on a map,
which takes a real value at every point on the x-y plane, while a scalar field takes a real value for any given ¢, x, y, z. Also, in a full
quantum theory, we have to distinguish operators and numbers, but here we will assume the scalar field only take real number
values.)
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The scalar field satisfies the following equation of motion: e a2 a7 a2 b

= 0, where V(¢) is the potential

2
density of the field, and we will call it potential for short in this problem. The energy density of the scalar field is % (%) +
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We consider the following potential: the false vacuum has field value ¢ = ¢, where V(¢,) = 0, and the true vacuum has field
value ¢ = ¢_, where V(¢_) is slightly negative. In the left panel of the following figure, we plot the shape of the potential. The
right panel is an example of the false and true vacuum in position space.

BNFRATHRE  BEZMMrEHBEZ ¢ = ¢, HEV(P) =0 RRZMFEHRERS = ¢, V($-) BL—1
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In this problem, we will use natural units and set the speed of light in vacuum ¢ = 1 (by redefining the time unit as the time that
light traveled over unit length). In this unit, when an object is at rest, its energy equals its mass by the famous formula E =

mc? =m.

AEH, BOBEABRBNHEXESHNER =1 (REXNENEMANRFEBMKENNE) . EEREA
R, YENFELIEESTENRE XHEZFBEMNARXE =mc® =m,

A. DOMAIN WALL H5EE

Before coming to the asymmetric potential which generates vacuum bubbles, let us consider a symmetric potential as follows:

ABMNAREXNFRNBEUREERNESER, FANEZRM T —PIRAOFE



Vp ()

¢- b+

Let's find a static solution which is homogeneous along the y and z directions, known as a domain wall. The potential of the
domain wall V(¢) = V(@) is illustrated above, with two minima V;(¢,) = 0. The domain wall can be used as the local
approximation of the bubble wall.

BAEHR—FE y Mz TEHTHN "B . LREHBERIENHEE V(@) =Vh(d), ERTRIHNMEV(¢1) =
0, BEEET]INEA/EBEN BEL.

Al. SIMPLIFY THE EQUATION OF MOTION 1k &z sl 5 2

Given the static and homogeneity (independency of y and z) conditions, write down the simplified
Al equation of motion for ¢.

RIEFRS, MRS (RMRB Ty Mz 77m) BEKH SHokEENEmHE,

2 points

2493

d’¢ _ avp(9)

Solution: e " [Note, if the student did not convert d to d, we also consider it as correct. Also, since in Part A, V =V,

both are correct.]

A2. THE DOMAIN WALL PROFILE B5E¢ F {27 BERN =B &

Express % in terms of Vj, (¢).

A2 ad 3 points
iﬁ*EEﬁﬁ Vp () FTRIAH K, 3454
2 2
Solution: @ =2 _ dﬁd—x, thus li((ﬂ) ) =20 Since far away from the domain wall, we have boundary condition 2% -
dx do dx d¢ 2dx \\dx dx dx

2
0 and V, = 0, we have (%) = 2Vp.

A3. THE DOMAIN WALL TENSION B5EERYGK /7 (2')

The tension of the domain wall (energy density of the wall for unit area in the y and z directions) is 0 =

\a f¢_+ f(p)dep. Find f(¢) in terms of V(). 2 points
BRI (Y. z AEBAERL, BROEEHRE) 2o = [0 F(p)dp. HEf(H)F 29
Vp () FIEH K.

Note: to avoid propagation of possible errors, in the later part of the questions, please still use the domain wall tension o where
applicable, instead of using the integral expression that you obtain.

E o ABREBEENEREGE AAEEENES T, HABBEEKAN, BNERTS o, MARXERREMNIRDF

Solution: & = [, [£(22)" + Vp(9)| dx = [ 127 ()] L= = [ 12V, ()12

f(P) =2Vp(¢)



B. BUBBLE WALL @78 B

If we only look at a small part, a bubble wall can be approximated as a domain wall. But globally, the bubble can be
approximated to be spherical with radius R. Let's assume that R is large enough, such that the thickness of the bubble wall is
much smaller than R (thin wall approximation). Inside and outside the bubble, ¢ — ¢, exponentially quickly.

MRBNRELBEN—/NEARE, EE EN—/ MR DAREERIE M. EEEA L, A=EETRIEMARTY
B, BEF¥ER. RRREBK, EEENERTI/NT R (BEEN) . AREENARMEEENING, ¢ I5E5IR
e T ¢so

At the moment when a bubble is nucleated, the bubble is static, and the bubble nucleation and motion create negligible amount
of radiation or other dissipations.

AE=EEFENNZ, BEEFLEN. S ERNTETRESNSH EREET 2,

B1. THE ENERGY ON THE BUBBLE WALL ;a8 EEfYRE = (1)

At the momentum of bubble nucleation, calculate the energy E},, carried by the bubble wall using R and
B1 the bubble tension o.

EE=ESENNZ, FE R MEBENKN o HERBENEER Ey.

1 point

15

Solution: Ey, = 4mR?0.

B2. FALSE AND TRUE VACUA BEZSHMEES

For a spherical bubble to appear, there must be an energy density difference between V(¢..). Thus, to
write down a potential to model bubble nucleation, we consider the potential V(¢) = V,(¢) +
(¢ — ¢,). In the thin wall approximation, we are only interested in leading order results in € (the

b+ ¢-
B2 lowest order in Taylor expansion which contains €). Calculate € using ¢ and R.

ATILREARETBEEBHI, V(d,) E’\]EXTELIZ\ETT B. B, AT7THESEENTEIEES 29
BEetER, BRANZEBEV(P) =Vp(o )o TEFHEILMT, FAIRBENE e TK
B (BRRERATEH e (IRIRM) . %UFH cFRIHE e,

2 points

Solution:

The energy density inside the bubble is —€.
From energy conservation, Ey, = §7TR3€,
thus € = 22,

R

Note: though the introduction of the linear term modifies the minima of the potential a little, but the modification multiplying
the energy density will be O(e?) and thus neglected.

B3. BUBBLE MOTION 838 A9z &

B3 At the moment of bubble nucleation, calculate the acceleration a of the bubble wall in terms of ¢ and R. 2 points
AR ENBRE, FH o MR ITERBNINEE a. 293
Solution:

Consider bubble expansion R = R + 6R.

Since volume expands faster than surface, the energy obtained by the bubble wall from this expansion is §E, =
=m(R + 6R)*e — 47 (R + 6R)? = 4mRo R



Since the force F = 5:—:’ =ma = Eya (inthe unitc = 1)

SEw/SR _ 1

Acceleration a = b
Ew R

B4. BEYOND NEWTONIAN MECHANICS #B# &4 §f ;1 =

When the speed of the bubble wall is close to the speed of light, Newtonian mechanics breaks down and
special relativity should be used instead. In special relativity, the kinetic energy of a moving object is

Ex = (y — 1)m, wherey = J% Calculate the time needed from the nucleation of the bubble to that
the speed of the bubble wall to reach 0.6.

L ERNERREN R, FRNFABER, RNTZEAIUHANL. TRAMEE, |, o
B m s maE S B = (r — Dm, Sy = . WHEASANEEBEEHAT 06/ | 44
HENR(E.

. . . d
Hint: you may need the mathematical relation

X
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dx x2-1
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Solution:

The rest + kinetic energy of the bubble is E, = ym = \/%41#20, where r = r(t) is the time-dependent radius of the bubble
-V

(to be distinguished from the initial radius of the bubble R.

1

V1-v2

4
4mrio = ;71'7‘36,

Thus, energy conservation at time t yields

. 1 r . dr _r?-R? . rdr
ie., =- ie,—= ,i.e., = dVr? — R? = dt.
dt T Jr2—R2

Given the initial condition 7(t = 0) = R, we have r? — R? = t2.

(Note, after a complicated calculation (it's more complicated if you use relativistic force), you get a surprisingly simple result. This
is not a coincidence. In fact, this is an analytical continuation of a Euclidean 4-sphere. We will see a little bit of this in Part C.)

—g9r__t _ —
—dt—m—0.6,t—0.75R.

C. NUCLEATION RATE OF THE BUBBLE 88 A9 /= &4 &

What's the probability for a bubble to appear? It can be shown that the nucleation rate I" of the bubble, i.e., the probability for a
bubble to appear in unit volume and during unit time, can be written as I' ~ Ae~SE/", where A and  are constants, and S is a
"Euclidean action", which can be calculated with the following procedure:

BESBAFENMERES D ? TRUER, JEBNFAEERT, BRARESEAER, —MNEEAERME, TTEAT =
Ae™e/" IHH, HPAMARER, S 22— RREAE  ANTSERITE !

(1) We "rotate" our physical time t to "Euclidean time" T = it (where i? = —1).
(1) 432 aTiE) t ek IR KATE) © = it (HAi2=-1) .
(2) The real-time and imaginary time field configurations are related by ¢p(t = 0,x,y,z) = ¢(t = 0,x,y, 2).

(2) SRERA [B) A0 R E A () 2R AL HR (¢ = 0,x,7,2) = (T = 0,x,y,2) BEKFER.



(3) Given the above time boundary condition, find a 4-dimensional rotational symmetric solution of the Euclidean equation of

e s e
motion tozt 372 t5,2 Frae 0.

(3) A% FRREARE M, HEIKKE ﬂHFa¢a¢+ Lo 0 _ W@ = 0 fy P AERERE X FREY R .

dy2 = 09z2
2 2 2
(4) Insert the solution to the Euclidean action S; = [ dt d3x [ (Zf) + %(%) +%(%) + %(%) + V(d))] tofind I'.

1 (d¢p)\2

(&) *3
2

Let us do this calculation in this part. Note that a 4-dimensional unit ball with radius r has "volume" %r‘* and surface "area"

2mer3

IEBMAEX—Bo P LR TTE, TR, mERN FR 52 —r . BREERA 223

(4) BB REHN &@%E&_fmds[gg4g@9%+

dx

H(%2)" + v skt T

dz

Cl. THE EUCLIDEAN EQUATION OF MOTION BX Kz &) A &

Since we are to look for a 4-dimentional rotational symmetric solution of the Euclidean equation of motion, it is convenient to

use p = /T2 + x2 + y2 + 22 as the variable for equation solving. Assuming that ¢ = ¢ (p) onIy depends on p (i.e., 4-

dimensional rotational symmetric), the general Euclidean equation of motion can be written as — + f(p ) d¢ d‘;ff) 0.

AT FHENHRONERNTER, EHp =2 +x2+y? +22 T’Ejjﬁﬂﬁzﬁ’]“’“ B ttiﬁt?ﬂ% 1E§zl§t¢> P (p) RIKRH

p (XHEMARDTENEN) , —RORKREAARTUEH L+ f(0) & - L8 =,

Find the expression of f(p).

K f(p)o

Hint: if the formal calculation needs too much calculus, you can consider an example: by tuning the form
of V(¢), one can obtain a solution ¢ = p2. Then f(p) can be solved by this example (and this form f(p) 2 points

Cl will apply for all forms of V (¢), not limited to this special form of solution). 29
?ET MEHATEETERTERZHIRY, RINEE—NGF  BILIEE V() R, N
SE MR =p?. B, f(p) TN 5<A1§J¥$ﬁﬁtﬂ§|€ (ZFEA f(p) XX AR V(e) #B
ﬁ%, MR T XNFRE) -
Solution:

Since the above equation is a general one, we can design a potential, such that the solution of the Euclidean equation is ¢ =
p? =12 +x% 4+ y? + z%. We have

¢ 3¢ 3¢ 9% _
92 9xz 9y 072

On the other hand, d—¢ =2, = 2p and
_0%¢ %9 02¢ %¢ d2¢ ¢
Then 2p X f(p) = 6,f(p) = 3/p.
C2. THE EUCLIDEAN ACTION RIK1EFH £
o Write the Euclidean action Si as an integral of p from p =0top — . 2 points
A3 p B9FRD (Mp = 07RE p > o0) HEREHEKKIEAE Sk 293

Solution: For 4-dimensional space, we have dtdxdydz = 2m?p3dp and



_ o 1(do 2
Sg =212 [ p (E(E) + V) dp.

C3. QUALITATIVE INSPECTION ‘&M F1E (4")

Before trying to solve the Euclidean equation of motion, let us first see how it behaves. If you are not familiar with this Euclidean
equation of motion, you can consider the following analogy: consider ¢ as the position of a particle, and p as an effective time
variable. In this case, answer the following questions (choose one from the options):

EMRRIZNTIEZR, RMNEEBNENNR. IRBEAABRIRESN TR, ROUMUAINTHILKIER 1€ ¢ KibH
—MUFHMNE, €p KILABEATEMMFNEINEERE, EXMERT, @MEUTED (BIUERED)

What's the nature of f(p) %? X THRIZ f(p) % B MR 7
(A) friction (i.e. decelerate the particle) fE /1 (BliL R FRE) '
C3-1 (B) anti-friction (i.e. accelerate the particle) # /1 (BliLRiFNiE) llpc/)l\nt
(C) friction for % > 0 and anti-friction otherwise 7£ % >01BERTEMEA, BN 7
(D) friction for % < 0 and anti-friction otherwise 7£ % <O0ERTEMEA, BUEHES
What's the force that drives the motion of the "particle" ¢?
WEFLF ¢ Tz BI T2 7 1 point
€32 14
(A\V (B)-V (C)dV/d¢ (D)—dV/d¢
Where is the "starting point" of ¢ at p = 0? (Here § is extremely small but finite)
s |TP=0. BB CEBEE AW (K5 R ERMEEREE) ! point
73
(Ao —10) (B¢ (¢ +10)] (D) p, —[0(5) ()¢,  (F) ¢, +10(5)]
Where is the "end point" of ¢ at p — 00?
TEp—ooo, ¢H RENE" HEWE? 1 point
C3-4 o
(Ao —10) (B¢ (¢ +10)| (D) p, —[0(5) ()¢,  (F) ¢, +10(5)]

Solution: 1. A; 2.C; 3.C;, 4.E

Note: For (C3-3) the solution is C instead of B. One can see it from two ways: First, consider x=y=z=0. In this case, p = 0 denotes
the bubble center after bubble nucleation. Then from continuity of ¢, the field value at the bubble center should have a slightly
(by an exponentially small margin) larger field value than ¢_. The second way is considering the effective particle and the friction
force. For (C3-4), at infinity, consider T — 0, then it corresponds to spatial infinity, thus ¢ = ¢, (spatial infinity makes it exact).

C4. THE BUBBLE NUCLEATION RATE 878 /= 4 3%

Express Sg in terms of R and o. 4 points

G4 HRfoSH S, 44

Solution:

. _ 2 [ 3 1 d¢ 2
For the integral Sy = 2m? [~ p (5(3) +V>dp

Note that at p — oo, the contribution vanishes. Thus, the integral breaks up to






Problem 2: (32 points)
[B18% 1: (32 43)

Lorentz reciprocity is a fundamental principle in electromagnetism with important application in antenna design theory. It states
that the receiving and transmitting capabilities of an antenna are identical. On the other hand, reciprocity can be broken by using
magnetic materials under an external magnetic field with strong magneto-optical effect. The study of Lorentz reciprocity can be
extended to nearly zero frequency at magnetostatics, shown in the figure below, with two current coils and an arbitrary object
fixed in locations. When one current coil works in transmitting mode, another one works in receiving mode. If we model the two
current coils as magnetic dipole moments m, and m, at locations r; and 1, generating magnetic flux densities B, (1) and B, (1)
in transmitting mode, respectively. Then, the reciprocity relationship can be expressed as

m, - B,(r;) =m, - B,(r;)
EBREZEHMRBRMFNEARE, ERLTERFEFEENA., EREEXRENERMNEASENIEEEN. 5—7
H, FEMNEHT, ERERRUOCRNMEEMRITT MR E S, BRZESNWRT MY REIR#S, WTEMR,
ARTERAMN—PEEERZRMMENYE. S— 1M BRRERNERTEN, Z— P ERAERBRATIE. WR*K
MR ERIRACE ry M, LOBBRF m m,, DHERFERNTERBBE B,(r) M B,(r). BA, &
BRI PURTA

m, - B,(r;) =m, - B(;)

myatrg m, atr,y
By(r2) B;(ry)
Transmitting Receiving Receiving Transmitting

The magnetic field B(r) generated by a magnetic dipole m; located at r; is given by,
TENE v BB m; FT= £ %5 B,(r) B TR%
Ho <3(T —r)(r—r) -m m; )

B.(r) = =2 _
i) = r—r F—r

In this problem, we will first establish the reciprocity relationship and will investigate how it can be broken by imposing a constant
velocity on the object.

AR, BMEEEBRIESHRR, FHRNETBEINYEENETEERITHE.

A. ESTABLISHING MAGNETOSTATIC RECIPROCITY AND NON-RECIPROCITY B8 B S HMET S M




For magnetostatics, we have vector potential A, magnetic flux density B, magnetic field strength H and impressed current density
J. These fields satisfy the Ampere’s law

VXH=]
with material response

VXA=B=uH
where u(r) is the isotropic magnetic permeability profile for the material, i.e. the object in the figure.

s, BINBREH A WREE B, #58E HRIIMIERTE ). XEGHEREER
VxH=]
FTYRRRBIFRIER A

VxA=B=uH
Hepur) EMRINERARMHSEN R, BIEPHYE.,

We want to establish the reciprocity relationship for magnetostatics when we have a magnetic dipole moment m; at location r;
in one case and a magnetic dipole m, at r, in another case. The two dipoles generate magnetic fields B;(r) and B,(r),
respectively. The two cases, labeled by i = 1,2, have the current density J; = V X M; and magnetization M; = m;6(r — r;) for
the two dipoles.

E—FPER TrifbE — MBI F m = £ #1H B, (N TTE S —MIEN Tr B — MBI T m, 3= £ 815 B, ().
ST =12 RIWAMERT, BONBLRRBE); = VX MMBARE M, = mo(r —r). NTERANBER 7 ##%
FMEHKRR.

Here, we also give some formulas for these differential operators:
R, BMNREE—EXTHRIEFHAR

VxA=2(0,4,—0,A,) + 9(0,A, — 0,A,) + 2(0,4, — 9,4,)
V-A=0,A,+0,4,+0,4,
V-(AXB)=(VxA)-B—A-VXB

[V-A4dV = [A-da

fVxAdV =—[Axda

[B-VxAdV =[A-VXBdV + [AXB-da

and Kronecker delta function §(r) is defined by

_ (oo ifr=0
8(r) = {0 otherwise

which satisfies [ §(1)dV = 1 when we integrate a volume V enclosing the origin. a is defined as the closed area enclosing volume
V.

LR EEREAM—METRV #1750, Kronecker delta B EL 6 (r) E&A:

o ifr=0

6@ ={y mupish
TEBE [6()dV = 1. a X hEEER VK.

Al. PROVING THE RECIPROCITY RELATIONSHIP JEBHE < &

Prove the reciprocity relationship m, - B,(r;) = m, - B, (). Hint: you may consider V- (H; X 4,). 3 points

Al ﬂEEHE%%%i m, - Bz(r1) =m, - B1(r2)o ?EZU_T . 'T;J_(E.]—[/X%ﬁg V- (Hl X AZ)O 3 ﬁ




If the material conducts electricity with an electrical conductivity o, we have to add an additional term to the current density J
due to the free current through

J—-J]+oE

in the Ampére’s law stated previously. Suppose now we move the conductor by a constant velocity v. There will be a Lorentz
force on the free charges proportional to E + v X B. It further updates the additional term in the current density through

J—-J+0(E+vXB),
which may upset the reciprocity relationship.
MRMEINB SR oG8, HTEIHNERBR, FRNBAAEL R RIEEEPAYEIREE J RIN—F HNT
J—>J+oE.

RERMEBRMNNETEE v TE. BREFTEBEFES E+v x BELLAIRERZE N, XH—SEHERBEPH
BN EREIA B SRR LA T 8E ¢




J—-J+0(E+vXB).

A2. BREAKING RECIPROCITY RELATIONSHIP TH B 5 xR

Express the possibly non-zerom, - B,(r,;) —m, - B, (1) as a volume integral in terms of the vector
A2 | potentials A; and A, and the conductor velocity v.

BT eEIEZH m, - B,(ry) —m, - B, () ®Rox ARBEREEA, MA, URSEEZv HEFRRRD.

3 points
35

You can complete part B and C without part A.
R INERE A SO IER T TR B #B2H0 C &,

B. MAGNETIC DIPOLES ON A MOVING PERFECT CONDUCTOR =R 8 S | B R (B4R F

In this part, we first obtain the magnetic field of a single magnetic dipole on a moving conductor, which is a perfect conductor (i.e.
the electrical conductivity o = o0) here, occupying z < 0 and is moving with a velocity v in the positive x-direction. This is defined
as the laboratory frame, as shown in the figure below. The magnetic dipole, situated at (x,y, z) = (0,0, z,) on top of the conductor,
has a magnetic moment m = m, X + m,Z with zero component in the y-direction.

EX—HDH, BINELEBRENSELEENHER TS, XERELSE RIBSE o=m), HiFz<0FBELE
x AR EMERE vizsl, XEEXALRELTR, WTEMR. MNTSEMEB (x,y,2) = (0,0,2,) L BRFEH
m=mxZX+m,2, HEyAhRLEENE.



m=m,X +m,Z

P
iV
i . —~

Conducting Object

In the moving frame at a velocity v = vX with respect to the laboratory frame, the object is simply a perfect conductor at rest,
giving us a convenience to find the magnetic fields generated by the magnetic dipole. The coordinates in the moving frame,
denoted as (x',y',z',t"), is transformed from the coordinates in the laboratory frame (x,y,zt) through the Lorentz
transformation:

ARNTRRELIRRNEE v = v BHNLIRRD, WERIR—HLENERSE, ERNESEBEERERT
FENES7 . BHERRPHLER, RTH &Y,z ), AEXERELIRR(x,y, 2, t) FRLRETE G TRERTIE

y

v
=

! !

x'=y(x—vt), y =y, z =z, ct' = y(ct —vx/c)
wherey = 1/4/1 — v?/c? and c is the speed of light.
Hpy =1/y1-v?/c?, c XK.

The magnetic and electric fields (B “and E' ) in the moving frame are related to the fields (B and E) in the laboratory frame by the
Lorentz transformation,

BN R PR TEY (B ME) SKRFALREFNG (BFE) 8X, THERELTHREAL:

By B, vy 0 E, E, 0
le/ = )/By + C_Z EZ , EJI, = ]/Ey —vy BZ
Bz, VBZ _Ey Eé yEz _By

We further simplify the problem by removing the conductor at the moment.
BMNAEBE SR SERH#— L E LA,

B1. MAGNETIC FIELD OF A MOVING MAGNETIC DIPOLE IN FREESPACE B H = [B| iz Z1 B R F O #L1Z

What is the magnetic field B'(x’,y’, z', t") from the dipole for an observer moving at velocity v with respect
to the laboratory frame? In this part, we only consider a magnetic dipole m = m, X pointing in the x-
direction and there is no conductor below the dipole yet. Please express your answer in the coordinates
B1 of the moving frame.

BEHEEXNTERFALRRINEEY BRI OUEENBRFES B (.Y, 2,t). EX—BAH, 39
BAMRFELERE x FTENEBR M =m, 2 FEERFTIAERIESE. FABHLIRRLER
FIRRIVE R,

3 point

Solution:

The B-field for a magnetic dipole m = m, X held at z,Z is

P —

Uo (3(r —2y2)(r — zy2) - m m
|T—202|5 r_202|3



Next, we introduce the perfect conductor below the dipole. The perfect metal has a planar interface at z = 0 while the dipole is
placed at a distance z, above the metal. The metal is being moved at a velocity v in the positive x-direction.

BTk, BABIABRT TANERSE. BEASAE =0 25— NFEFE, MERTATEELTT 20 4. £B#E
1E x 731 LR E v #af.

B2. MAGNETIC FIELD OF A MAGNETIC DIPOLE ON A MOVING CONDUCTOR (I) iz &4 E#BIR FH#%iE (1)

Please express the magnetic field of the magnetic dipole m = m, X on top of a moving perfect conductor

(i.e B(x,y,0%)) in terms of the laboratory frame coordinate. Please also verify the boundary condition of

the magnetic field in the moving frame at which the conductor at rest. Hint: adopt the method of images

and assume both electric and magnetic fields inside a perfect conductor is zero at a nearly-zero frequency. | 4 points
BERAXRELIRRRRES P NERSE L BBIRFm =m, L (#%FHRD B(x,y,0M). FIER | 44
MESER IE BN AR R R RIAIA A&, R’x - RARGRE. REEBEETNENTEXSHE
BHGHUHNE,




B3. MAGNETIC FIELD OF A MAGNETIC DIPOLE ON A MOVING CONDUCTOR (2) 51 S F #{BHR F M #s (2)

What is the magnetic field from the magnetic dipole on top of a moving perfect conductor (i.e
B(x,y,0%)) in the laboratory frame if the magnetic dipole above the moving conductor is changed to
m= rILEz“, pointing in the positive z direction? ~ 343
WRIZHHSE LT BRFEAM =m,2, $EEIE2z75E, BAFKE LR ELIRRFRBRT

R P IIEE S A (R B(x, y,0%)) ?

3 points




gx __ 3zppom, ;
By 2m(x2 4+ y2 + z2)5/2 0
zZ

In principle, the fields are transformed to the moving frame at which the boundary condition is verified, as we have done in part

B.2, but we have skipped here for brevity.

Now, we consider the two situations: one with magnetic dipole moment m, at r; = (0,0, z,) and another magnetic dipole
moment m, atr, = (6,0, z;). When one of them is turned on, another one is turned off.

W, BNFERAEMERL | —FZ r, = (0,0,2) LHHBRIE M, B—FZ 1, = (6,0,2,) LHHBRIEmM,, HHF
—MNTIE, A=K

my = mzé m, = mzﬁ
)

ol |
P =

Conducting Objec‘g
v

v
=

Now, we define the two problems to solve next. For the first problem, suppose the two magnetic dipoles moments m, and m,
point in the z-direction with same size m,, as shown in the above figure. Dipole moment m, imposes a magnetic field of z-
component B,(8) on r, = (x,,0,z,) and dipole m, imposes magnetic field B,(—8) on r; = (x;,0, z,) according to the same
function B, (x — x;). We then define a reciprocity figure-of-merit

_ Bz(a) - Bz(_6)
- Bz(a) + Bz(_6)'

When R = 0, reciprocity is satisfied. Reciprocity is broken when R deviates from value zero.

W, BMEXETREBROWNOR, NFE—NEE, REFDEBRTm m,Es5m 2 77, K/hm,8E,
W EEMR. BT m RIERE B, (x — x;) ¥ 2 38 B,(8) WBIHEMNE 7, = (x2,0,20) L, BIRT m, K#i7 B,(-9)
jjﬁj]uélj rl = (Xl, 0! ZO) —to %Eﬁ'fl\]EXﬁ%Iﬁﬁ

_ Bz(a) - Bz(_6)
- Bz(a) + Bz(_6)'

R =00, HEEHM. YRREEZEN, HEHMHITE.

For the second problem, suppose we change the pointing direction for m, to the positive x-direction with magnitude remaining
the same. The magnitude and direction of m, are not changed. In this case, the reciprocity merit is defined as R =

(B12(8) = Box (=8))/(B12(8) + B2 (=6)).

SEFE AT, BIRBRIVE m IR EBCHE x FETANMRERE, m, FEAMANRE, EXMERT, 5
EENXH R = (B1,(8) — Byx(—6))/(B1,(8) + By (—8))

B4. RECIPROCITY MERIT FOR DIPOLES ON A PERFECT CONDUCTOR B Sk FHMER FHESIHE



Find the reciprocity merit R for the two defined problems about magnetic dipoles on the moving perfect
B4 conductor. 3 points
KEXTFUERAN IRz sIEESE FRBRFNESINER. 39
Solution:

For the first case, the magnetic field from dipole 1 is

Hom xz _ Hom,
47|x|° 4 (x2 + 4z2)5/2

B,(x,0,z,) = — (—x* +82§)

which is even in x. Then, we have R = 0.

For the second case, the magnetic field from dipole 1 on dipole 2 is

§) = mx 6xZz,
Blz( ) (xz +4Z2)5/2
The magnetic field from dipole 2 on dipole 1 is
m 6x2
By(~8) = =22~ :

4w (x% + 422)5/2
with m, = m,.
They have the same values and hence R = 0.

In fact, for a moving perfect metal, although breaking the time-reversal symmetry, is still not able to generate the non-reciprocal
coupling. We need dissipation with a finite conductivity.

C. MAGNETIC DIPOLES ON A MOVING CONDUCTOR WITH FINITE CONDUCTIVITY EEEFRESXRNIEZSE &

AL BN T

In this part, we move to a more realistic situation that the conductor is a metal. It has a large but finite conductivity o (in unit of
Q~1m™1), deviating from the perfect conductor condition. Current density in the conductor is given by ] = oE. We also assume
that the current on the conductor surface is confined by a skin depth d of small thickness so that the electric and magnetic fields
cannot penetrate beyond the skin depth from the conductor surface. Then, the surface current density can be written as (6d)E.
We further take the approximation that d is just a constant. We only consider the two dipoles pointing in the positive z-direction
with same size m,, in this part.

EX—EHT, BNEE—AFEALNER, DLESHEERAEERNESE o (Bih o im™) | REEESHK
£, SEPHEREER] =oE A, BIMNFREERRESERAEER/\HHE Hk de,,.mjn B RS
HEMNSERETEBITERRTE. FAILRAERBETUSH (0d)E. FBNH—PBE d A—NEEK. EXIBDEAN
REEFMERFEIEEIE 2 756, K/ m, 48R

Again, we need to solve the magnetic field from only one dipole at (0,0, z,) first. In fact, the surface current profile generated on
the surface of conductor cannot be easily solved without adopting a numerical solver. Instead, we can approach the problem by
extending the method of image as an approximation. In this case, we would like to have a point-like multipolar source at the image

position (0,0, —z,) in order to give as closely as possible the same reflected field generated from the surface current. For the

(PN (P

current case of m = m,Z, we put an image magnetic dipole with given form of magnetic moment m,, X + m, 2 and electric

moment pj(,r)f/ at the same location (0,0, —z,). The mirrored magnetic dipole is now relaxed to have both magnetic and electric

components while neglecting the higher order multipoles. The size of these dipole moments are yet to be determined.



Bk, BOBEELRR (0,0,2) &RE-MERTFHHS. SFFL, SERAFLHREERAHARAKERBSEE
TRERRMBE, XE, RNSRBTBELGECRAXNEDE, EXMIERT, BIFBEBRLE (0,0, —2) &
BN EREIE, WERTHEMIREERNNREERAERNRET. STY m=m,2 HER, BEEEE
BFRBEEO00,-2) &, THELENTER B mP2+mI 2 . BEH PPy, FHBERTFANAERNEERAN
BAE, BNZRENESRT. XEBRENKINEGEHE.

C1. GENERALIZED METHOD OF IMAGES |~ X EH &5k

Find the magnetic field B'(x',y’,0%) and electric field E'(x', y',0*) on the conductor surface in the
moving f : ) @) ) : :

g frame. Express your answer in m,, m,.*, m, ° and p,, . You can use either the moving frame or
laboratory frame coordinates. Do not need to solve the mirrored dipole moments yet. 5 points
KBS LIRESHRANRGB (¢, 0%) FIBIZE («,y,0%). EAm,. m. m{” fpl” ik 55
ROBER. TINEBENLIRG LR FLIFRIEFHIER.
HANAFERBREERIE,




C2. FINDING THE MIRRORED DIPOLE MOMENTS i+ & $E & @k 4E

Find m,(cr), mgr) and pj(,r) in response to a given m,. The mirror dipole gives the same reflected field

generated by the surface current on the conductor. As approximation, only apply the boundary condition
(in the moving frame) on the surface current along the y-direction, which is the dominant current than the
one along the x-direction. It may be useful to express the answers in term of the dimensionless parameter | 5 points

K = pyvyod > 1. 54
i EmmFEmd . m{? #pl . BRERTAET SSERABHFENERNRH. £

HIEGL, BEELREN (EBRDLRET) SATAY FENREER, ZERLE x FEmSE

R TS, TUEERATEMNS K = yuyvyod > 1 RIAER,




C3. RECIPROCITY MERIT FOR DIPOLES ON A CONDUCTOR OF FINITE CONDUCTIVITY
ARBSESULBRFNEZNE
Find the reciprocity merit R for the two identical dipoles m, displaced by § (with r; = (0,0, 2,), 1, =

(6,0, zp))in the x-direction.

K X FEEMBES (r = (0,0,2), 1, = (5,0,2))) HENMERBHRT m, BEZHHNER.




