Problem 1: Oscillations of the Sun (22 points) XFHAIEY (22 &)

The sun is made of compressible gas. It can oscillate in a variety of ways. Investigating these
oscillations has provided rich information on the interior of the Sun. In this problem we study
two kinds of waves: pressure waves and gravity waves.
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Part A. Pressure Waves (15 points) /73 (15 %)

Most of us are familiar with sound waves propagating through Earth’s atmosphere, which is a
pressure wave. In the Sun, however, we need to consider the fact that gas density falls off
with height because of gravity. In this problem, we will use the following notations:
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M = average mass of particles f 33 i &

g = gravitational acceleration = 77 £

k= Boltzmann constant J% /] 2% = £

T = absolute temperature 2%} iz &

y = ratio of the constant-pressure specific heat to the constant-volume specific heat 7€ & FE#4

R

We model the Sun as an atmosphere whose density falls off with height because of gravity.
For a thin layer of the atmosphere between heights x and x + dx, the equilibrium pressure at
these locations are P(x) and P(x + dx) respectively. Assume that the gravitational
acceleration and the temperature are constant.
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Al Derive the differential equation for the atmospheric density p(x). 2 points
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Let A be the cross-section area of a column of the atmosphere.
External force acting on the gas = [P(x) — P(x + dx)]A.
Weight of the gas = [p(x)Adx]g.

Condition for equilibrium: [P(x) — P(x + dx)]A = [p(x)Adx]g.
In the limit dx — 0, P(x + dx) = P(x) + Z—idx.

Hence Z—P = —p(x)g.
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Gas law: P = 258-
m
dp _ mg
dx kBTp'

‘ A2 | The scale height H of the atmosphere is the height through which the density | 1 points




becomes a factor of e~ of the original density. Derive the expression of H.

KA R EEH R ORI e MR . SKRHIRIE

14

The solution of the differential equation is p(x) = p(0) exp (— ’:ﬁ—“‘;x).
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Hence —LH =1= H = -2~
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When a pressure wave propagates vertically in the atmosphere, the particles will experience
small vertical displacements. Let u(x, t) denote the vertical displacement of the gas particles

at time t whose undisturbed position is x.
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As shown in the Fig. 1, there is a change in thickness of the thin layer.
Express the change in thickness in terms containing the gradient du/dx.
(Remark: For u being a function of both x and t, du/0dx is called the partial
A3 | derivative of u with respect to x with t taken to be constant.)

i 1R, EERNEEARAE, WP ou/dx FoRIEEEAAL,

(B VE - wlENxFIe —FHWIHER, ou/ox e oAutExt Fxrom S4k,
tHER ST HEEL )

1 points
14

X X

—  x+tdxtulx+dx, o)
x +dx

xt+u(x,t
. (x, 1)

Fig. 1: The vertical displacements of a thin layer of gas particles caused by the propagation of a pressure wave.

Note the change in the thickness of the layer.
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Change in thickness = u(x + dx, t) — u(x,t) = g—z dx.

In turn, the vertical displacements produce small fluctuations in density and
pressure, denoted as dp(x, t) and J6P(x, t) respectively. Express the change in
op(x,t) and OP(x,t) in terms containing the gradient du/dx. Assume that
A4 | the heat transfer is negligible during the period of the pressure wave.
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Since the density is inversely proportional to the thickness of the layer,

Sp(et) _ _ du N

Since for adiabatic processes, P « p?,

6P(xt) _  Sp(xt) _ _ 6_u — 6_u
i =V yax:>6P(x,t) = —yP(x) P




Derive the differential equation of motion for u(x,t). Simplify your
AS | expressions using the speed of sound ¢, = /yP/p.
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Let A be the cross-section area of a column of the atmosphere.
2
p(x)AdxaTZ = [6P(x,t) — 6P(x + dx, t)]A.
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From Al,i = —p(x)g. Hence
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Show that the solution of the equation of motion is equivalent to a pressure
wave traveling through a uniform medium when the wavelength is shorter
A6 | than a length scale. Derive this length scale.

BRI 4 KA T K RER, B3 7 RS T 7 1 2 50 )
IS8 KIXNMRERE

2 points
25

The solution of the differential equation is equivalent to a pressure wave traveling through a

uniform medium if the first term is negligible compared with the second term.
2
i

2
_ 20%u
Second term = ¢ — T
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First term = yg % ~

=H.

Next we seek a sinusoidal wave with angular frequency . The energy density of the wave,

1 . . )
Epa)zuz, is expected to remain constant as the wave propagates upward with constant

velocity in the direction of decreasing density p(x). With this expectation in mind we let
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A7 Derive the differential equation for f(x). 3 points
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Substituting into A6,
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When the frequency of the pressure wave is below a critical frequency o,
below the Sun’s surface, it becomes trapped inside the Sun. What is @,? 1 points
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The pressure wave cannot propagate if Z T < 0> w < — Hence W, = ﬁ
S

Part B. Gravity Waves (7 points) E /¥ (7 4)

In Part A we only included the restoring force due to the fluctuation in the pressure gradient
for pressure waves traveling in the vertical direction of the Sun’s atmosphere. However, for
gravity waves propagating in a horizontal direction of the Sun’s atmosphere, the buoyancy of
the gas may also give rise to a restoring force which can sustain oscillations.
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Fig. 2: Displacement of a pocket of gas from height x to height x + Ax.
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To understand this, we consider a small vertical displacement of a pocket of gas in an
environment of the same gas with both gradients in the temperature and pressure. As shown
in Fig. 2, this pocket of gas has the same temperature, pressure and density as the surrounding
gas. When its height is displaced by Ax, it enters an environment with temperature, pressure
and density given by T + AT, P + AP and p + Ap respectively.
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For the pocket of gas, the pressure inside the pocket responds rapidly to the environment so
that its pressure also changes by AP. On the other hand, the change in temperature and




density may be different. Suppose the temperature, pressure and density of the pocket of gas
in the new environment are T + 6T, P + AP and p + §p respectively. Assume that there is
insufficient time for heat conduction from the pocket of gas to the environment.
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Bl Express Ap and &p in terms of expressions containing AT and AP. 2 points
Kap Mspit)ZiLz (HATHIAPFEIR) . 247
Since the surrounding gas satisfies the ideal gas law P =
Ap AP AT _ (AP AT
T=ToT= m=p(T-T)
Since the pocket of gas undergoes an adiabatic process, P « p?,
ép 1AP p AP
—=——= fp=——.
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Suppose the temperature and pressure gradients of the surrounding gas are
dT /dx and dP /dx respectively. Derive the equation of motion of the pocket 2 points
B2 | of gas.
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Let m be the mass of the pocket of gas.
Buoyancy of the pocket of gas = % (p+Ap)g —mg = % (Ap — 6p)
_ it 1 GO
=mg ( y P T )
Applying Newton’s law of motion,
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Determine the range of temperature gradient dT /dx in which the pocket of
gas can exhibit oscillations. Express the bound(s) of the temperature gradient .
; 2 points
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How does the gas in the Sun behave when the temperature gradient is outside .
: . 1 points
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The gas will become convective.
Reference for this problem: A. C. Phillips, The Physics of Stars, 2™ edition (Wiley, 1994)

END of Problem 1
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Problem 2: Plasmon Resonance and SERS ZEEFIHA1 SERS

Surface-enhanced Raman spectroscopy (SERS) is one of the most prominent optical
phenomena in the last 40 years. SERS is based on plasmon resonance, referring to the
significant increase in electric field intensity near the small metal granules under certain
conditions. In order to determine these conditions, it is necessary to learn how to describe the
properties of metals placed in oscillating electromagnetic fields.
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Properties of a medium in an electric field are described as follows:

D = eeoE = €,E + P

where E and D are the electric field intensity and the electric displacement respectively, € is
the permittivity of the medium, P is the electric polarization (electric dipole moments per unit
volume), €, is the vacuum permittivity. The boundary conditions in the absence of free
charges are the continuity of electric field tangential to the boundary and the continuity of the
electric displacement normal to the boundary.
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D = €€k = €E + P
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In an oscillating electromagnetic field, the permittivity of a media (including metals) is
dependent on the electromagnetic field frequency, € = €(w).
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Part A. Free Electron Gas (3 points) B BS54k (3 4)

Consider a metal occupying an infinite space. Positive ions form a crystal lattice. Free
electrons move inside the lattice. The number density of positive ions and electrons are the
same and equal to n.
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A uniform oscillating electric field EO sin(wt) is applied in the metal. Assume that the ions
are infinitely heavy and fixed. The effective mass and charge of an electron are denoted as m
and —e respectively. Within the simple framework of the free electron approximation one

can assume that the field acting on an electron is equivalent to EO sin(wt). All other forces
(including dissipative forces) are small and negligible.
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The electric field drives the collective motion of the electrons 7(t) along the
electric field direction. Derive the expressions of 7(t) and the polarization

Al | P (t) at the steady state. 2 4
L3 SR B L 5V HELA 5 AV ESRAKIZ 7 () . HE R AERR IR T HIZ (L)
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2 points

Newton’s second law of motion for electron,

2 —
m%?(t) = —eE, sin(wt)
One can get

- _ efo q

7(t) = — sin(wt)

Since the heavy (position) ion does not move, the electric dipole moment per atom is

- 2F
p = —ef(t) > P(t) = np = —“Lsin(wt)
A2 Determine the metal permittivity €(w). 1 points
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Part B. Plasmon Resonance (16 points) &5 F3tiz (16 4°)

In this part we consider a dielectric sphere of radius R and permittivity € in a uniform electric

field EO. Due to the polarization of the dielectric material, the electric field in the sphere and
its neighborhood is modified. The polarization of the dielectric sphere is due to mobile
charges being shifted in the uniform electric field. Here we model the dielectric effects by
two oppositely charged spheres with radius R and charge density +p being displaced along

EO by displacements +8/2 respectively (see Fig. 1).
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Fig. 1: Dielectric spheres in the uniform electric field.
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the external field EO and the electric fields due to the two charged spheres.

The total electric field E i Inside the dielectric sphere is the superposition of

Derive an expression for E in 10 terms of EO and the polarization P due to the

B1 | two charged spheres. 2 12)0;;1 ts
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Electric field at position 7 due to the positively charged sphere:
= 1 41‘[1”23 ?_Z_L—) - _—>_§ -p +p
E;, = 4neo( 3 p)r23 o 3607‘2 where 7, =7 2
Similarly, electric field due to the negatively charged sphere:
= _ 1 47'[7‘]? 7_:_1 _ L - = = §
E, = 47TEO( . p)r13 = 3607”1 wherer; =7 + .
Hence
B, =By+B,—B =B+l @-7)=F,-2-F-L
in 0 2 1 0 2~ 0 3¢ 07 35,
Due to the dielectric effects, surface charge is induced on the surface of the
dielectric sphere. Consider a point on the surface of the dielectric sphere
where the outward unit vector normal to the spherical surface is denoted as 7.
In the limit of 6 << R, derive an expression for the induced surface charge 2 points
B2 density o at this point in terms of the polarization P and 1. 245
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Consider a point making an angle 0 at
the center of the sphere with the electric
field. As shown in the figure, distance
of the boundary of the positively
charged sphere from the center ~ r +

5
=cosd.
2

Similarly, distance of the boundary of
the negatively charged sphere from the

center = 1 — gcos 0.
Hence, thickness of the layer of the induced charge
~ (r +2cos 9) - (r —Scos 9) = § cos@.

2 2

Surface charge density: 0 = pd cos@ = P cos0 = P-A.

~Fve charge boundary
\

Following B2, derive the relation between the normal components of the

B3 - -
electric fields E,,; - 1 and E;, - 71 at the surface of the dielectric sphere.
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Using Gauss’ law, Eout A= Ein ‘A E + 27
Eo €o

Express the induced electric dipole moment (io of the dielectric sphere as a 3 points
B3 | function of E,. Ij: N
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FromB.1, E;, - = E, - n—ng
From B.3, Epye Al = By - Al + .

0

Eliminating the polarization, Eout n= 350 S = ZEm N
Consider the boundary condition: Eout n = eﬁm fl.
Eliminating Eout En = —E0 fiand P-f = 360(E0 n— En n) = 3¢, (;;) Ey -1

—

Since P and E, are parallel, P = 3¢, ( )EO and d, = —7TR3P 4mR3€, (6 1) i

Let us analyze the behavior of a metal sphere in an oscillating electric field of angular

frequency w and amplitude EO. The radius of the sphere is R. When the wavelength and field
penetration depth are both much greater than the size of the sphere, one can consider the
metal sphere as a dielectric in a uniform electric field, except that one has to use €(w)
(analogous to the one expressed in the previous part) in place of the permittivity. Hence the

external electric field is E = EO cos wt, and the dipole moment is d= c?o cos wt.
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Sketch qualitatively the field lines (inside, near and far from the ball) in the
B5 | system assuming e(w) = —3.
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Far distances: Near distances:
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For €(@) = =3, By - = ——Eo -l = —3E, - fi, and Eyy,; - = 9E, - 1.

The sketch should show the following features:

In distant regions, the field lines are parallel to EO.
In the upper and lower regions the field lines are continuous from left to right.

In the neighborhood of the sphere the field lines terminate or originate at the sphere.

The direction at which the field lines terminate or originate at the sphere lies on the equatorial
side of the normal.
Near the equatorial plane the field lines originate and terminate at the sphere in the direction

opposite to EO.
There is a point of zero field above and below the sphere.

Inside the dielectric sphere the field lines are antiparallel to EO.

When w = w,.s, resonance takes place and the internal electric intensity

B6 |Ein| increases to infinity. Determine €,,, the value of €(w) when w = w,,;. | 1 points
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Significant increase in the electric field amplitude with frequency equaling w,.., is called the

plasmon resonance. Assuming that there is no power dissipation, |Ein| approaches infinity.

Taking into account dissipation, the major loss of power comes from dipole radiation.
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An oscillating dipole emits energy. Estimate the power I of this energy loss
using dimensional analysis. A dipole radiation intensity depends on the dipole

moment amplitude |(ZO , its oscillation frequency w,..s, speed of light ¢ and
vacuum permittivity €.
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Using the dimensional analysis we obtain:

> B
I=e¢q |d0| w;’escn
[[]=N-m-s7?!
o] =C?-N"1-m™2, [|c?0|] =C-m, [wes] =571, [c]=m-s71
Solving the equations, we get
5 (2 4
I= % [2.0 : 0.5 for each exponents]
0

In practice, |Ein| is finite due to power dissipation at the plasmon resonance
frequency w,..s. Suggest an approximate expression of the internal electric
field intensity |E in| using the condition that the power output is balanced by

the mean power pumped into the system by the external field during plasmon
resonance.
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Work done in producing an electric dipole is E|, (g R3 p) 6 = Eyd,.
Power consumed in producing the oscillating electric dipole,

d - - - d =

E(Eo : d) ~ Ey 'Ed ~ EogdoWres

By energy balance and d, = 4?HR?’GO (e — 1E;, » dy ~ €,R3E;,, we have

diw? dow3 c \3
Eydyw,ps =22 5> FEy =5 E. =E
0“4 0%Yres 6063 0 606‘3 in 0 wresR

Part C. Raman Spectroscopy (7 points) R & Y51 (7 43)

SERS is based on the phenomenon of Raman scattering, referring to the interaction of
electromagnetic waves with mechanical vibrations of molecules. First we consider a
molecule configuration. We assume that a molecule is made up of a number of atoms
connected by chemical bonds that behave like springs. Hereafter we consider a diatomic

molecule.

SERS F3LAl 2R SHUNIE, FRH B S 0 THUBIRSIAH AR . B3]
BB T IAS . BAMB R A0 702 P 23 A S B sk R A B 1 AL R

A B A P[5 2 . AT B XA 7207

Consider two masses m, and m, connected by a spring of spring constant k.
Determine the frequency w, of small-amplitude system oscillations.
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Using the reduced mass,

’k(m1 +m,)
w = —_—
0 mim;




A polyatomic molecule is characterized by its spectrum of resonant frequencies. One can
identify the molecule with the knowledge of its spectrum. This is the basic idea of SERS.
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Let us analyze the behavior of a molecule in an external electric field EO cos(wt). We assume
that atoms have no charge, i.e. the molecule has no dipole moment in the absence of the
external electric field. However, a molecule is polarized by the external electric field

BT — AN TFLEIMT IAE, cos(wt) FIIT . A B BB T34 Hufer,  BIERE
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d = e,ak, cos(wt)

where «a is the polarizability of the molecule. We assume that an induced dipole moment d is

parallel to the electric field E. Due to thermal agitation, mechanical oscillations of the
molecules always exist at finite temperatures, and we assume that the thermally agitated
angular frequency is wy.
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During molecular oscillations, the distance between atoms in a molecule deviates from its
equilibrium value. Suppose the deviation x of the interatomic distance is given by x =
Xo cos(wyt). Furthermore, when the interatomic distance changes, the polarizability of the
atoms changes accordingly, i.e., @ = a(x) (see Fig. 2).

FEr ARG, 707 rh 7 T R R 0 i 28 P o AR 8 SR ) e 2 ) e 22 x
x = xg cos(wot) Zhtt o BLAN, MIEFRIEECARR), SR IR EEAE N AR, Bla =
alx) (LE2) .

p ()

v

—Zo | To

Fig. 2: The dependence of the polarizability of atoms in a molecule on the deviation of the interatomic distance
during molecular oscillations.
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Assuming that the amplitude of mechanical oscillations is small, express

C2 | @(x) using linear approximation, given that a(0) = ay and Z—ZL:O = Bo. 1 points
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a(x) = ag + Box

C3

Determine the diatomic molecule dipole moment in the external field
EO cos(wt). Provide the answer in the form:
SRIMAHE, cos(wt) F MR T4 WS, ZRUTIIHAER:

d = ¥, d; cos(w;t) €))

2 points
25

d=
=>d

€0y + Boxo cos(wot))E, cos(wt)
= €,aoE, cos(wt) + %eoﬁoxo cos(w — wy)t + %eoﬁoxo cos(w + wy)t
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A detector logs the dipole radiation of the molecule and detects several peaks
with frequencies w;, corresponding to expression (1). The height of each peak

is equal to the radiation intensity of the dipole cil-. Determine frequency and
height of each peak. Express the answer in terms of

€0, o, Bo, Xo, W, Wy and EO .
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The dipole radiation intensity reads

> 2 4
_ |d0| Wyeg

€oC3

where w,q 1s the oscillation frequency. Hence we can observe 3 peaks with amplitudes:

Frequency Amplitude

w €o(aoEp) > w*
3

w — Wy fo(ﬁoono)z(a) - w0)4
4¢3

W + Wy fo(ﬁoono)z(a) + w0)4
4¢3

B 5 WU

[0.5 for each of number in the table]

The presence of peaks with frequencies differing from w in the spectrum is called Raman
scattering. The stronger the external electric field the higher the signal detected from one
molecule. A strong electric field can be obtained using the phenomenon of plasmon
resonance. This is a difference between SERS and ordinary Raman spectroscopy.
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Part D. Surface-Enhanced Raman Spectroscopy (SERS) (7 points)
REFENEEE (SERS) (743)
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Consider a sphere of permittivity €(w) in the uniform oscillating electric field of amplitude
|§0| in the case of plasmon resonance.
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The molecule of the investigated material has to be placed into the points of
maximal electric intensity. Locate these points in the figure on the answer
D1 | sheet.
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Determine the enhancement factor g(w) of the electric field at these points,

where g(w) = ||( l)l. Express the answer in terms of the metal
0
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Metal beads enhance the external electric field radiation of amplitude EO and dipole radiation
of the molecule as well. The second process is characterized by the enhancement factor
g'(w, wy). When w > w,, one can assume g’ ~ g. Then the signal intensity in SERS is g*
times greater than that in ordinary Raman spectroscopy.
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Usually the signal comes from many molecules. Dipole radiations of the molecules are not
coherent to each other. Thus a total radiation intensity formed by N molecules is equal to N1,
where [, is the intensity of dipole radiation from a single molecule. An example of the
experimental data is presented in Fig. 3.
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Fig. 3: [Credit: U.S. Naval Research Laboratory] Raman signal spectra. Red curve corresponds to SERS, blue to
ordinary Raman spectroscopy. X-axis corresponds to Raman shift k, = wy/c, and Y-axis corresponds to
radiation intensity in arbitrary units. Note the different number of molecules in these experiments
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By analyzing the experimental data presented in Fig. 3, estimate enhancement
factor g due to the plasmon resonance at the peak of Raman shift w,/c =

D3 | 1000 cm™!. Assume that w, < w.
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Based on the results of Part B, estimate the radius R of the metal beads used

in the experiment. Assume that the wavelength of the external radiation A = .
2 points
D4 | 785 nm.
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3€(wres) ~
m ~ 90 - E(wres) ~ —2.069
3
Ein = Eo (a),;R) :
() 3
g(w) = || 0||_| (wres)l(m) ~ 90

=R = 36 nm
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