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All final answers should be written in the answer sheet.
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All detailed answers should be written in the answer book.
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There are 2 problems. Please answer each problem starting on a new page.
2/, B% 18, JeRHF— LK.

Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering the questions. No
working sheets for rough work will be distributed.
BRI LS A L, AR BRI A Y, e R SRR

If the answer book is not enough for your work, you can raise your hand. Extra answer books will be provided. Your
name and examination number should be written on all answer books.
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At the end of the competition, please put the question paper and answer sheet inside the answer book. If you have
extra answer books, they should also be put inside the first answer book.
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Problem 1: Quasicrystals (28 points)
& 1: R (28 4)

In 2011, the Nobel Prize in Chemistry was awarded to the discovery of quasicrystals. Nowadays, quasicrystals
can be found in many applications such as the hardening of steel. How do quasicrystals differ from ordinary
crystals?

2011 F, ERENRABRKENRAER. £S5, BNETRNZEREARRONLA, FNNaEE
. REAERFSEBREEFEHAR ?

In crystals, atoms are arranged in a periodic manner. The structure of crystals is known by periodically
replicating the basic unit of the arrangement of a small number of atoms (Fig. 1 (Left)).

rwREF, EFUBRBHETRAS .. BEAHMMES PERTFHIINERRA, Mo EFE K&
Mzl (A1 (£) ) .

On the other hand, atoms in quasicrystals are arranged in an orderly manner, but the local arrangement cannot
be repeated by replication (Fig. 1(Right)).

A—HE, ERETHNERFUBEFNARES, ESEMOHIAEREEF MBS EHES (K1
(&) ) .

However, quasicrystals are far from random. They have a “hidden order”. For example, the structure in Fig.
1(Right) can be considered as a 5-dimensional cubic structure projected onto two dimensions. To understand
this idea, we will consider a 1-dimensional quasicrystal projected from a 2-dimensional square lattice in this
problem.

BE, EREITZAZEVN. WONE— "REAAE . 6l Bl (7)) FNEETUEEA
REBN g 5 BTN, ATEBRINMUE, BMNERETRZRMN TR HN—%
HERE,

Fig. 1: (Left) A crystal (Right) A quasicrystal, known as Penrose tiling.
1 (&) & () FRA Penrose tiling AIE R,



A. Structure of Quasicrystals (14 points)  RENEH (14 4)

Figure 2 shows a two-dimensional lattice in which the atoms are located at (x;, x,) = (m,a, mya) where my,
m, are integers and a is the lattice spacing. In Section A, we assume a = 1. We construct a stripe defined by
the condition

2 BRT AZTHER, HPEFANT (0, x) = (na,mya), my. my2EE, MaRHKEEERE.
£ ANE, RAVER.=1. BIEE—ESE, LEXA

X4 x

1
_Sx2< +T.
T

T
T is the irrational number 7 = (1 + V/5)/2. The inclination angle a of the strip is given by
T REEH T = (1+V5)/2, KBHMHAD

1
a = arctan—.
T
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Fig. 2: Tllustration of the projection method of obtaining a quasicrystal. 2 [x){&"ﬁ?ﬁ 5%@%/& E%'TZ'S o



We project all lattice points lying within the strip to the line L; defined by x, = x; /7. Since 7 is an irrational
number, the projected atomic positions on L; form a 1-dimensional quasicrystal. The lattice spacing now have
two possible values.

BB TR EFRNTEBRRREE| L2 L, LNEX Ax, =x/t. ATTRLER, KT %
FRRFNEFERER T —4#ERE. NE, RKEEERDITERNE,

Calculate the lengths of the lattice spacings A and B. Write your answer as an expression 2 points
Al | containing 7. 12) N
TTERKEE AR B, ZEMEHFREXETL. 7
T
A=cosa= ;
1412
1
B =sina =
1412
Write the position z(m,, m,) of the atom of the quasicrystal projected from
(my, m,) onto the line L, (that is, the displacement of the atom from (0,0)). Write your 1 point
A2 | answer as an expression containing T. lp(/)l\n
B TMmy, mp)RZEIL 2 F N ERKRTAIEZz(my, my) (BIA(0,0) B|RFHY 7
%) . ERUEAHREAEH.
( ) ™m, +m,
z(my,m,) = ——.
v V1 + 12
Calculate the average lattice spacing d when the lattice length is very long. Write your 2 Doints
A3 | answer as an expression containing 7. 12) /\
TTEYBEKERKNNOFEYRIKEE. ERUBTHNFRERATT, 7

Consider the end point (m;, m,) of the lattice [1].

The length of the lattice approaches /m2 + m3.
The number of lattice points approaches m; + m,
Furthermore, m, approaches m, /.
dz\/mf+m§_\/1+1/r2 Viz+1 V12 +1

= or or
my; +m, 1+1/t T+1 T2

Note that the configuration of the lattice spacings A and B are no longer regular. It was observed that the
configuration can be generated by the famous Fibonacci sequence, which uses the substitution rule

AR, WIREIEE AR B AHESI AT, MWK E] RI8AVZEM ] I HZE B R Fibonacci sequence 4
X, 1ZF5E BRI
A—- AB, B - A.



For example, the configuration of the first seven spacings ABAABABA in Fig. 2 is obtained by five
substitutions starting from B.

Bign, & 2 Ei-ENEEEABAABABARYHES 28I M B TR B M EBHRIKFH.

A4 Write the sequence after six substitutions starting from B. 1 point
5 TM BFRNRERFNFS. 19>
ABAABABAABAAB
Let ny and ng be the number of A and B in the sequence. Write the numbers ny and ng 2 points
A5 | of A and B after one substitution. 12) N
L Hing AFFRATIBEE . BT —XRE#%/E, AT BHEER, Mng. 7
n, = ny + ng,
ng = ny.
A6 Calculate the ratio n, /ng when the sequence is very long. 2 points
HE L FIRKR A FIn, /ng . 29y
Let r = ny/ng. Dividing the above equations,
1
r=1+4+-
r

When the chain is very long, r' approaches r. Hence,

1
r=1+-
r
r’—r—1=0.
1++/5
rE——=r1

For further analysis, we introduce two mathematical notations. For a real number x, |x| denotes the integer
part of x, and frac(x) denotes the fractional part of x. For example,

AT =, BAIBIABIEET S, W THEx, [x]F=7 xNBEED, MfracCo) Rz xh
INEERSY o B4,

[1.73] =1 and frac(x) = 0.73.
Labeling the atom at (0, 0) as j = 0, the position of the jth atom in the quasicrystal is given by
BO0,04MEFIRCH =0, EREPENMRFIOMEHR



_ j
z; = jd + frac (T) A.

A7 | Derive A as an expression containing 7. ## SANFRIAR, NFEHET, 2 g(;jlilts
Method 1:
We can see from Fig. 2 that when j = 1,
1
T =
! 241
1 1
frac (—) ==
T T
From A3,
T2 4+1
Substituting into the equation,
1 VTP +1l A
2+1 T C
1

Method 2:
Note that (see the proof below)

1 T’
: . |J
mp; =]—my =]_l;J-

v = el bl - Bl = 2= e - e 6]
Ji Ji T—1 frac(j) V1412 1 (j
T

= + — = - frac —).
Vi+12 121412 V1412 72 J V1 + 72 T
1
A= ——
Wt +1

Proof of my = |j/z|:
Noting that the upper boundary passes through the point (—1,1), we can calculate the number of atoms

enclosed in the strip by subtracting the number of atoms in the area BCE from ACFG.



Number of atoms in area BCE = z (l J + 1)
E
m1+1 G
Number of atoms in area GDF = z (l J + 1) D
m1+1 i A C
i
Number of atoms in area ACFG = z (I—J + 1) +my + 2.
i=0 T
m1+1

i
Number of atoms in the strip + atom A + atom G + Z (l J + 1) —atom B = Z (I—J + 1) +my + 2.

m1+1
Number of atoms in the strip(=j + 1) = z (l J + 1) tm+1- Z (l J U 1)
m
1t J my + 2.
my;+1

For each value of m,, there are at most two atoms. For the atom with a higher value of m,,

my+1 m; +1
! +(m1+1)—frac( )=(m1+1)r—frac( ! )
i 1 m; +1
]—=m1+1——frac( ! ),
T T T

m1<];<m1+1,

m =
1 T .
For the atom with a lower value of m,, we note that its previous atom belongs to the group with m; — 1.
Hence

m; +1

j =

j=(%J+m1)+1=%+m1+1—frac(m)=mlr+1—frac(%).

i—. =my + 1 = lfrac (n:)

m1<];<m1+1,

-t}

A8 Calculate the coordinate (m,, m,) of the atom with j = 101. 2 points
TTE) = 1019 R F B L4R(my, my). 24
101 101 101 101
frac( ) = = l J = — 62.
T T T T



ol T2 +1 1 (101 62) 101 4 62(t—1) 394627
VA = — — = = :
1ot T2 T2+ 1\ T VT2 +1 V1241 vtz +1
On the other hand,
™m, + m,
Zj = mlA + sz B R y—————
T2 +1

Hence, (m,,m,) = (62,39).

B. Diffraction Pattern of Quasicrystals (14 points) EEAENETSHEZE (14 4)

Quasicrystals were first discovered by observing their characteristic diffraction pattern.

FERAEREEEBEUREFITHERERIM.

Fig. 3: Electron diffraction pattern of a quasicrystal. & 3 : ERANE FLI5E.

Figure 3 shows the electron diffraction pattern of a quasicrystal. A crystal is said to have n-fold symmetry if

its diffraction pattern is identical if it is rotated by an angle of 2mr/n.

B3 B r—fERENE TSR, MREERREAE2r/nr, HUTHERMER, WZ&EREEn

EXFRRIE

Identify the symmetries of the diffraction pattern in Fig. 3.

Bl 2 N 43—
PHAE 3 TR RAYIIRME

2 points
245

The diffraction pattern in Fig. 3 has 2-fold, 5-fold and 10-fold symmetries [2]. Note that since pentagonal
structures cannot fill up the space fully, they cannot form periodic structures. See Penrose tiling in Fig. 1. The

5-fold and 10-fold symmetries are characteristics of quasicrystals.

To understand how the diffraction pattern can be derived from the projection method, we first consider the

diffraction pattern of a 1-dimensional crystal.

AT T RN EZTBETHER, RMNEXFE—ERENTTIHESR.




VLN

Fig. 4: Light diffraction by a lattice. [ 3 | BRI HLLTET.

As shown in Fig. 4, the 1-dimensional lattice consists of N atoms. The position of atom j is x;. A light wave
with wavevector K; is incident on the lattice at an angle 8 with the normal direction and is diffracted at the

same angle with the normal. The diffracted wave has a wavevector k; with the same magnitude as k;. The
change in the wavevector is denoted as

ME 3 FiT, —EMENAETAR. ETMRERy. KEASSER, A AR LK,
5FX%mMAEe, TiHETREEERERENARE. PTI5HENEERK, WK/NEK R, BRTL
RITA

q-= kd — ki'

The magnitudes of the wavevectors are denoted as |k;| = |K;| = k and |q| = g. Note that q is a monotonic
function of the diffraction angle 6, and so can represent the diffraction direction.

BERORNRT Ak = k| = kFlql = q. TR, q2PTHAONRIFRE, o RIS TS
[

B2 Write the expression of q as a function of the diffraction angle 6. 1 point
SR qtE Nt RO BRMRAR . 14
q = 2ksiné.

The positions and magnitudes of the diffraction peaks are given by the structure factor defined as

PIHENNEMK/ NHEMER AN, HEXH

N 2

1| T
S(q) = N [z cos(q.x;)| + N z sin(qy,x;)
j=1

=1
where q,, is the x component of q. H£dq, 2qIx D E.

Remark: Students who are familiar with complex numbers may use the definition

i ABEBNRZTUEATIIEX



N 2

1
S(q) = N z exp(iq.x;)

j=1

Consider a 1-dimensional periodic lattice in which x; = jd. ZE—# EERg, Hx = jd.

What are the values of q at the peak positions of the diffraction pattern of the periodic
B3 | lattice?

ERPERENTIHERS, BEMELNERZZD?

2 points
245

When qd = 2nm for integer n,

2 N N

S(q) =% icos(qjd) +% zsin(qjd) =N z % i
=1

j=1 =1 =1
o 0 2 0 0
Hence, the diffraction peaks are located at g = % where n is an integer.

For students using complex numbers, when qd = 2nm for integer n,

2 N N

N
1 . 1 1
= . iqgjd . i2nnj R
S@=y Ze N Z N Z

Now consider the case that each atom in the periodic lattice is “smeared” out to a length b, where b < d. This
means that the density p(x) of the lattice becomes

RAEZEBUTERL  BEETNEGINRTEHE HE ZKED, Hfb<d, XBRKRERBHNE
Ep()&EH

1 .
0 otherwise.

The diffraction peaks do not have the same magnitude any longer. £T5fIEARFE B HE K/,

B4 Calculate the magnitudes of the diffraction peaks at q of the smeared lattice. 2 points
TTERM SR LTEIERN KN, 24y

The structure factor can be calculated by the phasor method. As shown in the figure, the
length of each element vector is dx, and it spans an angle qdx. Hence, the radius of the arc
is dx/qdx = 1/q. The total angle of rotation is gb. Hence, the magnitude of the vector sum
is 2(1/q) singb/2. A
1/q



5551n7

1 /N2 b\? sin ab
. ab
s@ = ) = |5

For students using complex numbers,

elab _ 1)°

=N igbh

1IN » ]
= — |— qx
S(q) N‘bj;)dxe

Now consider the quasicrystal in Part A. Since there are two incommensurate lattice spacings in the
quasicrystal, its diffraction peaks are given by wavevectors with a pair of indices,

WEZE A BFNERE. ATHEERETFERTTAENRNREGEE, RtERENTIHIERR
B —XHERBR RS

Consider the phase ¢ = ¢,,,2; in the structure factor of quasicrystals. Write the
expression of the phase in the form

EREREPEMET OB = gmazjo BE THIFRER 2 points
¢ = 2nF + Xfrac (];), 2%

where F is an integer and X is a real number.

HpF2EE, XEXE.

B5

2 Jj
¢ = qmnzj = 7 (m +— [jd + Afrac( )]

20 (my L)) + 20 [mE 4 (14 2| (2

. 2 _ .
=2m (mj +n l]—J) + Mfrac (]—)
T 241 T

Hence,
F=mj+n l]—J
T

A A 2nt(nt — m)
X=2n[ma+n(1+—)] or — =

Td 1+ 72

Calculate the magnitude of the diffraction peak at g,,,,. 2 points

B0 e g R OB BT A 7




In the expression of ¢, the first term is an integer multiple of 2, and therefore contributes to a factor of unity
upon exponentiation. In the second term, the value is uniformly and densely distributed in the interval (0, X)
as j covers an infinite range and t is an irrational number. Hence, the structure factor is given by [3]

- X\?
sin=

=N)_(
2

1IN (%
S(qmn)zﬁ }f dyey
0

The same solution can be obtained by the phasor method.

Find (m, n) for the highest diffraction peak in the range 0 < n < 3, excluding (m,n) =
(0,0). Then calculate gy, (in units of 21r/d) and the magnitude of this peak. 3 points
BT S TEsEE0 < n < SHEEEIHE, ), FEIEmMN) = (00). BREHHm | 35

(M2m/dA8AL) FMIZIEERI KRN,

The diffraction peak is highest when X is smallest, which in turn means m/n is closest to T = 1.618. In the
range 0 < n < 3, this is given by (m,n) = (5,3) since 5/3 = 1.667.

P 2—”(m + g) _ 6854°"

d d

2nt(nt —m)
=———=-0.4100

1+ 72
2
sin7
S(Gmn) =N e = 0.9861N.
2

The diffraction peaks in the range 0 < n < 3 are plotted in the following figure. Although the ordering of the
diffraction peaks is difficult to follow, envelopes for each value of n between 0 and 3 are plotted to illustrate
the hidden conditions.



Quasicrystal Structure Factors
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Problem 2: Black Hole Physics (32 points)
[ 2: BiEME (32 43)

Black holes are the most mysterious objects in our universe. A black hole is surrounded by an event horizon
(horizon for short). Anything that falls through the horizon into the black hole cannot escape. If a black hole
is stationary, not rotating, has no electric charge, then the horizon is spherical, with radius R = 2GE /c*,
which can be also written as R = 2GM /c? using Einstein’s energy-mass relation E = Mc?2. Here G,c, M
and E are the Newton’s constant, speed of light, and mass and energy of the black hole, respectively. The
horizon area is thus A = 4mR?. The singularity “inside” the black hole is one of the greatest mysteries in
the theory of gravity, since the energy density of the singularity appears to diverge and the classical general
relativity fails to operate there.

RIFEFHPREBORE . REEFHERT (ERAT) R, BERRIEHRRNREAERD
k. MRFBERRESH, NREOAHER, WRBAFISKEHN, HFRAR=26E/c", FHRER
HriBABREER R E = Mc?, AL ZBITUSER =26M/c? . KB G, ¢ M M E DAAFWEINE
#. KE. BRREMERBNEE. WAEIRE A =41R*. BRARNTFAERERNSINARZ
—, AHRME EEREETESFK KM XHEXRAHEM.

In the following, we will discuss the formation, thermodynamics and rotation of black holes, and how a
civilization may use black holes as power plants.

HEARBF, FAVBIHERFOREA. BOEMEEERR UENRRRREENTTREM.

Note: To avoid the usage of general relativity, in this problem, no concepts about curved spacetime will be
introduced. You do not need to think about curved spacetime when working on this problem.

X L ABREAT XENRHIR, ABBAESENTEHEFRS ., ERNITEZEN=EH.

PART A. FORMATION AND PROPERTIES 2 i /9 X 114 it

We study a simple formation mechanism of black holes. Consider a spherical shell of photons (quanta of
light) is moving towards the center of the shell to form a black hole. The self-interaction of the photons can
be ignored.

BHR—DEREARBREAG . ZE—DHT ENET) FRT. XPERTFHLTEERFTHO
B8], WEAAERB. BMNBRETZENBHEEER.

Assume that the wavelength of photons is short enough, and thus the shell is thin (this
short wavelength assumption only applies for this Question A1, and may not apply for
later questions), which of the following describes the formation of the horizon and the
A1 | singularity of a black hole?

BRRHTFIRIKEBRE, IARTRE (XMEEKITURABERNE, BRI AL F,
EEMBEFRNABHRZIEEKEMN) . THHR— 1 EGRER T REAANT A0
TR ?

1 point

14




= Photon Shell / ¢ FEk%% / St FEk&H
VWA Singularity / 2785 / &5 ==== Horizon / 5% / ¥l 5%

Solution: A

Suppose the photons in the shell all have wavelength A. Thus, the energy of each
photonis E, = hc/A, where h is the Planck’s constant. To make a black hole with

1 point

A2 | horizon radius R, what is the number of photons N needed? L4
BIRERA DAL TEEKEBR A TN, SAIKTHEBNE, =hc/l, HFh 7
TR ER. ATEBRSTEEANRNERR, KEFFHIEFEN,

3
Solution: N = = = < kA
E,  2Gh
Entropy of infalling photons ¥34gi3 18 H1 Yt F R
For a shell of N photons, the entropy can be written as Sy, = a kglNCZ. Here kg is the
Boltzmann’s constant and « is a dimensionless constant of order 1. (In the below
analytical formulae, a should be kept explicitly. In order of magnitude estimations, a )
o 1 point
A3 | can be set to 1.) Find integer numbers c¢; and c,. DN
7]

N NEFERMERFEE LS Sy, = a k' N2, XB ky BWRZEFE,
a~01) B—PMEENEH. (ETEASZIANENTARXF, FREa. ERERME
T, TR o B9EELA 1). KEE c; F ¢z,

Solution: ¢; = 1 from dimensional analysis; ¢, = 1 from that entropy of photons is an extensive quantity.

Entropy of the black hole 2 iFE 91

A4

Taking A = R, we have the entropy of the black hole S = Sy,,. (If A > R, the photons
are too non-local to form a black hole. Thus, the A = R photons carry the largest
amount of information.) Write S in terms of R, @ and the constants of Nature.

®A=R, BMNBIRBHES =Sy, . (X2FEA, WRA>R, NXFERSEE
AR, FeeRgEmMER. Al 1=RAEFTIUETRSNELE. )IEAR a E
AYIEEEERERS.

1 point

14)




a kg R%c3

Solution: § = a kzgN =
2Gh

Based on the black hole entropy formula, which of the physical observation is incorrect?
Choose one from the below answers.

A. Black hole entropy is an interdisciplinary research direction of thermal, quantum and
gravitational physics.

B. The black hole entropy is an extensive quantity which scales as the volume of the black
hole.

C. The existence of black entropy indicates that black hole should contain many
microstates. 1 point
A5 | D. Black holes are gravitational systems with non-perturbative quantum effects, and are 14>
thus a key to quantum gravity.

RIEREBOAX, TEWMHESRRN ¢ 5 REF—II,

A REBEHRNZ. EFERMS|INNZXFER,

B. BiREE L&, SRBIAEIRMIEL.

C. REFERE, MUBRIZTFERWIRZE.

D. BAERFIMIMEFFUAENSINERSE, FUEBEEFSIIH

AR,

Solution: B (BH entropy scales as area, not volume, which is very special from other entropies.)

A is correct because the formula contains kg (thermal), h (quantum), ¢ (special relativity) and G (general
relativity)

Cis correct as a usual interpretation of entropy indicates.
D is correct because h is in the denominator.

Part B. Entropy bounds of nature 2R

It is conjected that black holes are the densest objects of nature, not only in energy, but also in entropy and
information. Based on this observation, estimate the quantities in Part B. By estimate, you need to get the
correct order of magnitude. Order one coefficients may be neglected.

MIEFREN, REFAMELT LEEEERANYE, BEREE. GREERANYE. &1
XANEW, 1EXS Part B IR EMBERETT. RABEMLITERNBEESR. 0(D) NEHITUZ
i o

Nowadays, computer hard disks store information with a day-by-day increasing
information density. However, to store information, enough number of states, and thus | 2 points
enough entropy is needed. This is understood from Boltzmann’s statistical 249

interpretation of entropy: S = kg In (), where Q is the possible number of states of the

B1




system. Consider a spherical hard disk in the vacuum, with capacity 1Tb = 102 bit.
What is the minimal radius of this hard disk?

B, BEREZTNFENEEEREEREA. B2 ATHEER RNTE
BHEZNRSE, FFNFEEBSHE. XUTNMRRZSBNGITRERE
B S=kpinQ, Hip QZRGFURLTHRSNEE. ZE—NETTHKE
Wi, REHN1Tb =101t . KEENR/NFER.

Solution:

ki —1nQ = 1Th = 102,

B

(Note: In Q = 1Tb, instead of Q = 1Tb, since 1Tb hard disk can represent 2172 states. Here log base 2 or
base e is ignored since it’s order of magnitude estimate.)

R =,/2Gh101%/c3 = 6 x 1072°m

The Bekenstein Entropy bound I & 1B R

Consider a clump of matter with mass M,,, (and thus energy E,,,) and radius R,,,. When
this clump of matter falls into a black hole (the black hole has existed before the clump
of matter falls in), we require that R,,, should be not greater than the horizon radius of
the initial black hole, to make sure this clump of matter can fall in. Denote the entropy
of this clump of matter as §,,,. Find a universal upper bound of S,,,, in terms of E,,; and
R,,, but independent of parameters of the black hole, or Newton’s gravitational
constant G. 4 points
B2 | XEREH M, FTINEEE A Ep), ¥FH R, H—BWFR. YXEUREH—D | 14
BRI (MEIE%ER, REMEELFET), RINEK Ry ARTRBAKNISR
Fi2, BAXHEAEPHRXIYAIEREE. FAXNERE, RKXRYENE S, 89
i EPR. IRSEN Sy, BN ERFTER En M Ry Rox, ERRBTRBNSE,
WA TS| TEERG.,

Note: Necessary steps of derivation is required.

I FEESHYLBENESIR.

Solution: We use subscript i to denote quantities of the initial black hole, subscript f to denote quantities
of the final black hole after matter falls in. Thus, the conservation of energy and non-decrease of entropy
reads:

C4
Ef=E+E, = E, =Z(Rf—Ri).

Sp =S+ Sp,



akgc?

Thus, S;, < Ch

(Rr = R)(Ry + R;) = 2 E,, 2R, + 23 Ery)

In addition, we have R; = R,,,. For each possible initial black hole R;, there is a corresponding bound. We
should take the tightest bound in all this bounds by taking R; = R,, (note: this is not directly inserting R; >
R,, to the above equation, because the direction of the inequality sign is different.) Thus,

ak 2G
S < L Epy (2R + 2 By

Further, as we mentioned, black holes are densest objects in energy. For the clump of matter to be at most

as dense as black holes, we have Ziim < R,,. Thus,
3ak
S & = 2i5 %
B3 For a 1Tb hard disk with 1nm radius, what is the minimal mass of the hard disk? 1 point
HF—ARH Inm, BEH 1T BE, BENREESHEA? 19y

Solution: 1012/(=%x 10~°m) = 7 x 10~%2kg

Part C. Black hole Temperature and radiation 2 ;iE 98 EfiR5¢

1 Find the black hole temperature T in terms of horizon radius R. 2 points
KEBIORET, HHSTFEZER KT, 2493

Solution: We already know the black hole energy and entropy. From the first law of thermodynamics,

_ dE _ ke
T ds ~ 2akgR’

T

HAWKING RADIATION E£ 455

According to the Stefan-Boltzmann law, an object with a temperature T should radiate.
Calculate the radiation power P in terms of the horizon radius R.
HETEN- R RZETE, RARET YRR LES. TEEFNINEP, A
I MHEZ R KRR, 2 points
Note: the Stefan-Boltzmann constant o can be written in more fundamental quantities 24>
_ 2n5k§
50 = Tocans .
- e FOS o g . 215k
SR BREEE N o TNETRANNBERE 0= 22,

Solution: P = 4mR?0T* = hc?n®/(30a*R?).



Primordial black holes are a conjected type of black holes, which has existed almost
from the “born” of the universe till now. Denote the mass of the primordial black hole
by M, when it has just formed in the primordial universe. For the primordial black holes
that still exist now, estimate a lower bound for their M (ignore the accretion of the 4 points
primordial black holes). 4 4y
FRHBRBERING, EFEREZY, RURELFaE LR, &2 A
BINATFE. B Mp AEFEHEY, EVMREBRNEANNERE. ATILERVIERE
BEMEDMATE, KM TR (RREVRFKIR).

C3

Solution:

There is a mass bound of primordial black holes, because if the primordial black holes are too light, then
these black holes energy are all radiated away by Hawking radiation during the history of the universe.
Thus, we consider the black holes which are just Hawking-radiated to zero mass now. They are the lightest
primordial black holes and we calculate their Mp.

dM _ P _ hm®c*

dt  ¢2  120a%G2M?2

6.4 1/3
M(t) = (‘::;—fcz (to — t)) , where t, ~ 1019 years is the age of the universe (which we hope that you

know).
Att =0, Mp > M(0) = 1.4 x 103kg.

PART D. ROTATING BLACK HOLES g £ iE

Realistic black holes are typically rotating, due to the angular momentum conservation of in-falling matter.
With rotation, the first law of thermodynamics of a black hole is dE = TdS + QdJ, where  can be
understood as the angular velocity of the horizon, and J the angular momentum of the black hole. In the
following, we consider the (. > 0 parameter regime.

PSR PR —REREN. XERIPERRBNODE—RETHNE, URAHETIE.
XTHNRR, REORNFEE—EREAIE =TdS +Qd], HF QoJHIEBARRNBEER, ]
ERANANE. £ TEF, BNFE Q= 0NSHXE,

Now, we let the black hole to interact with a clump of matter outside the black hole.
After non-adiabatic interaction, part of the matter falls into the black hole, such that
the change of energy and the change of angular momentum of the black hole satisfies
dE = AdJ, where 1 is a constant. Find the range for 4 for the black hole to lose energy | 2 points
after the interaction. 245
MEFZEARBSREINANYEEEER. £dIERANEEER, BoYRE
HEE, XPMEEFR, BREENANENTHHE JE =Ad], EPAI1Z—E
B, ATUREESYRNBEEARESR/N, K1HNBRESTEE.

Dl

Solution: Insert it to the first law, we have



TdS
a-a/ "

dE = . From dS > 0 (non-adiabaticity), the condition dE < 0 implies 0 < 1 < (.

In D1 we have found out the principles of extracting energy from black holes. In practice, we study an
explicit toy model of how matter extract energy from a toy “black hole” in Newtonian mechanics (i.e. no
special relativity or general relativity needs to be considered). This is a simplified version of the so-called
Penrose process.

FEDLH, BMNEIMTMREFRREEN—MEN, RE, BMNAR—IEER, k#E—PI1ER
%Dﬁﬁnﬂ}k—/\tﬁl@ﬁjﬁ‘—qﬂﬁ’] ‘DIRERRE" (BWHEWR, AHEEFEIXEN R AR RR)
REEE. X2 ‘IR 99— a1k,

Let’s model the rotating black hole as a rotating sticky ring with radius R, initially with mass M; uniformly
distributed on the ring, and angular velocity (};. Its center of mass is initially at rest. We neglect the
gravitational effects of this ring (i.e. the ring does not source a gravitational force in our approximation).

ERAMNA—DF2A R, TEER, BHRUENTIRENRE. XNVGEREN M, (B30 HTHE
BEEAN Q.. EVHENZ, ARV, FNZEIASI N (BHEik, AR Jﬂu
T, XPRFAFESIN),

Now, consider a composite particle AB (there is a force to bind A and B, but the binding energy is
negligible), where part A and part B has mass M, and Mg, respectively. A and B are considered as point
mass.

WE, ZE—NEEHT AB(ATB ZEMNNIEABRAE—k, BRERE ABNHERETIUNZR), H
T AERH B BB AR B RE M, MMz, AFIB %B_ILXEEJZE%, o

o8
Vin /
—_
B B
MA MB

Stepl/5%—% Step2 /E_H Step3/E=% Step 4/ E£MUH

Step 1: the composite particle AB moves toward the center of the black hole with an initial velocity v;,,.
F—4  EENTUNBEE v, HEXRNFEE.

Step 2: AB stick on the black hole surface, and rotate together with the black hole.

B4 ABMAERERE L, HEMERRED

Step 3: B got absorbed by the black hole. To simplify the calculation, assume here (in D2 and D3) that after
absorbing B, the black hole is still a uniform ring with radius R, and its new mass is M; + Mj.

F=24  BHWERRBRE. ATEUITE, KRR (£ D2 M D3 AH) B HERKE, RBNDAA—IY
RIrRT, FR2RMAR MENRETNT M; + Mz,

Step 4: At the moment B got completely absorbed, the binding between B and A disappear, and then A
moves freely to the tangent direction of the black hole in the black hole reference frame.



FOY N B EEWRIKMERE, BMAZENRAERT. T ARANSERT, AGERE
HIP%TTm B E K

Steps 2, 3, 4 happen fast enough, such that the amount of rotation of the ring during these steps is
negligible.

T = MPREFTEBR, XESPBRARRELINAZT UBEART,

Find the condition that the ejected kinetic energy K, for particle A is greater than the

initial incoming kinetic energy for the composite particle K;,, = 2 (M, + Mg)vZ,, in the .
2 4 points
D2 |formof; > --orQ; <--. 44
BRT A S FIRE S Kowr, EARTHIVATNREN Kin = 5 (My + Mp)vl,. K
Kout > Kin E’];J—xﬁ: FH-Q > - _X-Q < %To

Solution:

_ Mp+Mp
vf = i oo Ui
Mi+Ma+Mp

M; Q
M i
itMg+Mp

Qf -
After the ejection of particle A, particle A has v, = (v, v,), Where v, = vy and v, = Q¢R.

Thus, the requirement K,,,; > K;,, can be expressed as

Q, > dn (Ma+Mp)(MZ+ME+2M;M4+2M;Mp+M 4Mp)
" MR My

Suppose a civilization uses a rotating black hole as a power plant, by repeatedly using the model and
process described in D2, and make use of the difference in incoming and outgoing kinetic energy.

RIg— AT Mkt RiARIZIEE . RIEENTIEZEAMEM D2 PRI E, MEN A H
RN g8 N: =12

The black hole is initially at rest with mass M and angular velocity (1. Each time, the civilization throws
composite particle AB with the same initial velocity v;, with respect to the civilization themselves. The
composite particle AB has mass My, My << M. Again, to simplify the calculation, just as in D2, we model the
black hole by a uniform ring with fixed radius R although its mass grows by absorbing B.

MIAEZ, BREE, REAM, BHEN Q. 5K EAXPRE—EAKT AB BHARNE
B vy (BRI FRASBE 2B F) HEEAT. BEARNTHRE M, My < M. HEAE

1Egn D2 fi—#¥, FAHERBEMUASR. FZEEA R NWER. ATRE BT, REIRREE
.

This process is repeated as long as energy can be extracted from the black hole. When the process is
repeated, the civilization keeps at rest in the v;,, direction (the horizontal direction in the figure in D2), but
follows the motion of the black hole in the directions perpendicular to v;,.




BMNEEXMERE, BEEAHENBRPRIEEN L. SEEXNMIENNE, XADXBE vy,
JIERFFRR L (BN D2 BE R HIKETTmE), EREET v, (9710 LERERREZE.

At the moment when no net energy can be extracted from the black hole, the
civilization stops throwing matter in. What is the terminal angular velocity 1 of the 6 poi
black hole when the civilization stops throwing matter in? g(;;lts
UABRAXNEEMERRPRIGEEN, XNMXRELEYERARET., HiX

M RAAFEFBRBRSDEE, KBERRSHARE Q.







