
 Problem 1: Error es-mates of a gravita-onal wave experiment (30 points) 

问题 1: 引⼒波测量中的误差估计 (30 分) 

The discovery of gravita1onal waves ini1ated an era of gravita1onal wave astronomy. In addi1on to the ground-based 
gravita1onal wave observatories, gravita1onal wave observatories based on laser interference between satellites are also 
planned, for example, the Taiji and Tianqin programs in China and LISA in Europe. Here, we study a simplified version similar 
to the Tianqin program.  
引力波的发现，开启了引力波天文学时代。除了在地面上建设引力波天文台，目前，通过卫星之间激光干涉的空间

引力波计划也在筹划之中，例如中国的太极计划、天琴计划，和欧洲的 LISA。这里，我们考虑类似天琴引力波探测
计划的一个简化版本。 
 

 
 
As illustrated in this figure, we consider three satellites surrounding the earth following circular orbits. They form an 
equilateral triangle. They form an interferometry in the nearly vacuum environment near the earth. From the change of 
interference paHerns, the change of space distance is measured to detect gravita1onal waves. Here we will study the error 
sources for Tianqin to reach its desired measurement precision.   
我们考虑如图所示，环绕地球呈等边三角形的三颗卫星按圆轨道运动，在地球周围接近真空的环境中组成激光干涉

仪。通过激光的干涉条纹变化，来感知时空距离随时间的变化，探测引力波。本题将讨论，为了达到引力波探测精

度，需要考虑的误差来源。 
 
In this problem, we will use the physical constants and satellite parameters including: 
在本题中将用到的物理参数和卫星技术参数包括： 
 
Newton’s gravita1onal constant牛顿万有引力常数 𝐺 = 6.67 × 10!""m#/(kg	s$) 
Planck’s constant 普朗克常数 ℎ = 6.626 × 10!#%m$kg/s 
Vacuum Permeability真空磁导率 𝜇& = 1.257 × 10!'	kg	m	s!$	A!$ 
The mass of the earth地球质量 𝑀 = 5.97 × 10$%	kg 
The radius of the earth地球半径 𝑟 = 6.37 × 10'm 
The distance from a satellite to the center of the earth卫星轨道与地心的距离 𝑅 = 10(	m 
The laser wavelength used by the satellite 卫星使用激光波长 𝜆 = 1064	nm 
The size of the op1cal system of the satellite卫星光学系统尺度 𝐷 = 0.1	m 
 
Part A: Gravita+onal fluctua+ons on the orbit of the satellite 卫星轨道上的引力扰动 

A1 Here we only consider gravity from the earth and consider the earth as a homogeneous ideal ball. Give 
the periodicity 𝑇 of a satellite rota1ng around the earth. Please use second as the unit and give three 
significant figures.  
在仅考虑地球引力，且设地球是均匀理想球体的情况下，求卫星绕地球转动的周期 𝑇，请给出以

2 Points 
2 分 



秒为单位的具体数值，精确到三位有效数字。 
A2 Since the shape and density of the earth is inhomogeneous, the satellite will feel an addi1onal 

accelera1on 𝛿𝑎	in addi1on to the uniform circular mo1on. To simplify the calcula1on, let us model the 
inhomogeneity of the earth as follows: Consider an ideal ball with mass 𝑀 − 2𝑚. Two addi1onal point 
masses (each has mass 𝑚) are put to diametrically opposite points on the equator of the earth. Assume 
that the satellite orbit and the earth are in the same plane, with angle 𝜃 between them. Give the 
precise formula to calculate 𝛿𝑎.  
A2. 由于地球形状与密度的不均匀性，会对卫星产生除匀速圆周运动之外的额外加速度𝛿𝑎。为简
化计算，将地球的不均匀性建模为：质量为	𝑀 − 2𝑚 的理想球体，其赤道对径点上放置两个额外
的质点，每个质点质量为	𝑚。且假设卫星的轨道与地球赤道在同一平面内，与两质点夹角为𝜃。
由此给出 𝛿𝑎	的精确计算公式。 

 

2 Points 
2 分 

A3 Calculate all the possible periodici1es for 𝛿𝑎. Please use second as the unit and give three significant 
figures.  
A3. 求	𝛿𝑎	随时间变化所有可能周期的数值，请给出以秒为单位的具体数值，精确到三位有效数
字。 

2 Points 
2 分 

A4 In the 𝑅 ≫ 𝑟 limit, give the leading order expression (the lowest nonzero order in the Taylor expansion 
of 𝑟/𝑅) for 𝛿𝑎.  
求在	𝑅 ≫ 𝑟 极限下，𝛿𝑎	的领头阶（对𝑟/𝑅进行泰勒展开的最低的非零阶）表达式。 

2 Points 
2 分 

A5 Es1mate the typical value of 𝛿𝑎 (an error within two orders of magnitude will be considered as correct). 
估计 𝛿𝑎 的典型数值（误差在两个量级之内可视为正确）。 

3 Points 
3 分 

A6 In satellite experiments, we are interested in the gravita1onal waves with a par1cular periodicity (such 
as periods between 1-1000 seconds). Thus, if the periodicity of the gravita1onal fluctua1on is too long, 
it will not interfere the gravita1onal wave measurement. Assume the satellite is co-rota1ng in the same 
direc1on with the spinning direc1on of the earth. In the Taylor expansion of 𝛿𝑎, calculate the 
component with period closest to 1000s. Denote this component as 𝛿𝑎"&&&. Es1mate the value of 
𝛿𝑎"&&&	/	𝛿𝑎 for 𝜃 = 𝜋/3. (an error within two orders of magnitude will be considered as correct) 
A6. 在卫星实验上，我们感兴趣特定变化周期（例如周期为 1-1000秒）的引力波信号。所以，变
化周期太慢的引力扰动并不对引力波测量造成干扰。设卫星与地球自转方向相同，求 𝛿𝑎	的泰勒
展开中周期最接近 1000s 的分量 𝛿𝑎"&&& 与 𝛿𝑎	的比例 𝛿𝑎"&&&	/	𝛿𝑎 。请给出该比例 𝛿𝑎"&&&	/	𝛿𝑎 当 
𝜃 = 𝜋/3 时的数值，误差在两个量级内可视为正确。 

3 Points 
3 分 

 
 
A1 Solu1on: 
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A3. Solu1on:  
 
Note that the above expression has a symmetry of cos 𝜃 ↔	− cos 𝜃. Thus in 𝜃, the period is 𝜋 (i.e., 1/2 of the period of the 
2𝜋 rota1on). In 1me, there are two possibili1es: the earth co-rotate or counter-rotate with the satellite. Note that the earth 



period is a day = 86400𝑠. Thus, the two possible periods are 
"/$

#
$%&''±

#
".#&)×#'+

= 3.39 × 10%	s	(counterrotate), 𝑜𝑟	5.95 × 10%	s	(corotate).   

 
A4: Solu1on:  
 
Taylor-expand to second order (note that the first order in 𝑟/𝑅 result cancels): 

𝛿𝑎/ ≃
#+14!("!# 567! 8)

*&
.  

𝛿𝑎: ≃
#+14! 7;< $8

*&
.   

 
 
A5: Solu1on: 
 
There can be many reasonable ways to es1mate. For example, one can consider the density difference between the rock 
and the sea. Thus 𝑚 can be es1mated using  
 
10#kg	m!# 	× (average depth of the sea 3.5 × 10#𝑚)	× (10%	of the earth surface area ) ∼ 1.8 × 10$&. Thus, for a typical 
value of 𝜃, for which 2 − 8 cos$ 𝜃 doesn’t cancel to extremely small values,  
 
𝛿𝑎	 ∼ 10!?	m/s$ (Note: the same order of magnitude can be obtained using precise modeling of the earth.  
Answers ranging from 10!@	~	10!"" can be considered correct.  
 
A6: Solu1on: 
 
Considering that in the co-rota1ng case, the period of the system is 119098s. To extract the component with 1000s period, 
Taylor-expand to the (cos 𝜃)"$& term (note: there is no  (cos 𝜃)""? term. Expanding to (cos 𝜃)""(	is equally fine).  
Then for n=120: 
 

Note that the #
$
Y#
$
+ 1[⋯Y#

$
+ (𝑛 − 1)[ almost cancels the 1/n! in the Taylor expansion (the difference is at the order √𝑛, 

which is within the error allowance).  
 

𝛿𝑎"&&&
𝛿𝑎 =

2A9"	𝑅A𝑟A cosA 𝜃
𝑅$A9$
𝛿𝑎 = 10!"%"			 

 
 
Note: taking n=118 the result is 10!"#?, also considered correct. Also note that in reality (when we go beyond the current 
toy model), the higher order mul1ples will dominate 𝛿𝑎"&&&.  
 
 
Part B: Free electrons from the solar wind太阳风中的自由电子 
Consider the laser signal between the satellites. Although the space between satellites is close to the vacuum, but it is not 
the absolute vacuum. In par1cular, solar wind will introduce free electrons. Let the number density of the free electrons be 
𝑁B, the electric charge of an electron be 𝑒，the electron mass be 𝑚B. And we ignore other media apart from these 
electrons.  
考虑卫星之间的激光信号。虽然卫星之间的环境真空度较高，但并不是绝对的真空。特别地，太阳风会带来自由电



子。设自由电子的数密度为 𝑁B，电子电量为𝑒，电子质量为 𝑚B，且忽略卫星之间除自由电子以外其它的介质。 
 

B1 Assume that the electrons move freely in the electric field produced by the laser. Calculate the 
accelera1on of the electron 𝑑𝐯B/𝑑𝑡	as a func1on of the electric field 𝐄 produced by the laser. 
设电子在激光产生的电场中自由运动，求电子的加速度 𝑑𝐯B/𝑑𝑡 与激光产生的电场 𝐄 之间的关
系。 

1 Points 
1 分 

B2 Calculate the 1me dependence of the current  from the free electrons. 
求自由电子带来的电流随时间的变化 𝑑𝐉/𝑑𝑡。 

2 Points 
2 分 

B3 Calculate the phase speed of the laser	𝑣C in the environment of the free electrons (since 	𝑣C is very 
close to the speed of light, the higher order difference between 	𝑣C and the speed of light can be 
ignored).  

Hint: from the Maxwell equa1ons, one can derive that D
!𝐄
DF!

− 𝑐$∇$𝐄 + 𝑐$	𝜇&
G𝐉
GF
= 0.  

B3. 求激光在自由电子中运动的相速度	𝑣C（由于	𝑣C 足够接近光速，	𝑣C	与光速差别的高阶项可以
忽略）。 

提示：由麦克斯韦方程组，可以推出 D
!𝐄
DF!

− 𝑐$∇$𝐄 + 𝑐$	𝜇&
G𝐉
GF
= 0. 

3 Points 
3 分 

B4 Let 𝑁B = 10	cm!#. Calculate the phase error of the laser between two satellites. In other words, if 
there were no free electrons, the laser waveform arrived at a satellite is cos 𝜃. Now with free electrons, 
the same wave form at the same moment changes into cos(𝜃 + 𝛿𝜃). Calculate the value of 𝛿𝜃. 
设 𝑁B = 10	cm!#，求两个卫星之间，由自由电子引起的激光相位误差。即假设没有自由电子，

到达卫星波形为 cos 𝜃 ，有自由电子的情况下，在同一时刻到达卫星波形为 cos(𝜃 + 𝛿𝜃) ，求 𝛿𝜃 
的数值。 

3 Points 
3 分 

 
 
B1: Solu1on: 

𝑑𝐯B
𝑑𝑡 = 	−𝑒

𝐄
𝑚B
		 

 
B2: Solu1on: 

𝑑𝐉
𝑑𝑡 = −𝑒	𝑁B

𝑑𝐯B
𝑑𝑡 =

𝑁B𝑒$𝐄
𝑚B

		 

 
 
 
B3: Solu1on:  

From ∇ × 𝐄 = − D𝐁
DF

, ∇ × 𝐁 = 𝜇&	𝐉 +
"
J!

D𝐄
DF

 , 

D!𝐄
DF!

− 𝑐$∇$𝐄 + 𝑐$	𝜇&
G𝐉
GF
= 0 (where ∇ × (∇ × 𝐄) = ∇$𝐄 − ∇(∇ ⋅ 𝑬) ≃ ∇$𝐄 ) 

It’s solu1on in frequency space is 

𝜔$ = 𝑐$𝑘$ + 𝑐$𝜇&
K,B!

1,
.	 

Thus, the phase velocity  

𝑣C =
L
M
= H𝑐$ + 𝑐$𝜇&

K,B!

1,M!
≃ H𝑐$ + 𝑐$𝜇&

K,B!N!

%-!	1,
≃ 𝑐 Y1 + O'K,B!N!

(-!	1,
[	 	 

 
B4: Solu1on: 
The wave can be wriHen as cos(𝑘𝑥 − 𝜔𝑡 + 𝜃), where 𝜃	is the ini1al phase at the emiHer 𝑡 = 0, 𝑥 = 0. The receiver has a 
distance 𝑥 = √3	𝑅 		and the arrival 1me is 𝑡 = √3	𝑅/𝑐.  
 

With free electrons, 𝑘 = L
J
Y1 − O'K,B!N!

(-!	1,
[	 . Thus inser1ng 𝑥 and 𝑡,  



𝛿𝜃 = 	−L
J
× O'K,B!N!

(-!	1,
× √3	𝑅 = 	− O'K,B!N

%-	1,
× √3	𝑅 = 5.19 × 10!'  

 
Part C: Shot noise 散粒噪声 
Any precision measurements are limited by the uncertainty principle of quantum mechanics. Assume that every photon’s 
arrival 1me at the detector can be considered as independent stochas1c processes. Also, in actual experiments, phase error 
of the laser is more important. But here for simplicity, here we only es1mate photon number errors. 
再精确的测量手段，都要受到量子力学的制约。设卫星干涉仪中，激光中每个光子到达探测器的时间都是独立的随

机事件。另外，实验中其实更关心激光的相位误差，但是这里我们为简便起见，仅估计光子数误差。 
 

C1 During a certain period of 1me, the average photon number in the laser is 𝑁. In this case, the error in 
the photon number measurement in the laser is Δ𝑁 =	𝑁P. Find 𝛼. 
C1. 某段时间内，激光中平均包含 𝑁 个光子。此时对激光中光子数的测量的误差为 Δ𝑁 =	𝑁P。求 
𝛼。 

1 Points 
1 分 

C2 If we request that in one second, the rela1ve error of photon number measurement is QK
K
< 3 × 10!'. 

Calculate the minimal power of laser 𝑃RS5 that the satellite should receive. (3 points) 
C2. 若要求在一秒钟时间内，光子数测量的相对误差为 QK

K
< 3 × 10!'，求卫星接收到的激光最低

功率 𝑃RS5。 

3 Points 
3 分 

C3 Assume the laser arrived at a satellite is emiHed from the other satellite from the three-satellite system. 
Es1mate: in an ideal case, what is the minimal emission power of laser 𝑃ST;U from the other satellite 
(can be considered to be correct if the order-of-magnitude is correct).  
设到达卫星的激光是由三卫星系统中，另一个卫星上的激光器发射的。估计理想状况下，激光的

最低发射功率 𝑃ST;U（量级正确即可视为正确）。 

3 Points 
3 分 

 
 
C1: Solu1on：𝛼 = 1/2.  
 
C2: Solu1on:  
We thus need the minimal number of photon 𝑁 = 1.11 × 10"" per second.  

The energy of each photon is 𝐸 = ℎ	𝜈 = ℎ J
N
= 1.87 × 10!"?𝐽 	 

Thus the minimal power at recep1on is 𝑃RS5 = 2 × 10!(W.  
 
C3: Solu1on 1: Using Gaussian laser beam and the formula 

V-./
V.012

= Y-	W
!

%	*	N
[
$
= 5.45 × 10!? .  

Thus, 𝑃ST;U	~	3.67W 	 
 
Solu1on 2: Es1ma1on from the uncertainty principle 
Within the satellite op1cs system diameter 𝐷, for each photon, the momentum uncertainty of the laser is Δ𝑝 ∼ 	ℎ/𝐷. Thus 
the minimal spread angle is 𝜆/𝐷. Over a distance R, the minimal radius of the spot is 𝜆	𝑅/𝐷. Considering the receiver radius 
is at most 𝐷, too. Thus, 

V-./
V.012

∼ w 	W

	*34
x
$

~	8.83 × 10!? .  

Thus, 𝑃ST;U	~	2.26W  
 
 
 



Problem 2: Metric-modified geodesic and heat conduction (30 points) 
问题 2: 度量修正的测地线和热传导 
Solving physics, such as wave propaga?on, geodesics, and thermal conduc?on, on a curved surface in 3D requires a thorough 
understanding of metrics and differen?al geometry. However, there can be significant simplifica?ons for systems with spa?al 
symmetry or by adop?ng coordinate transforma?on. In this ques?on, we will go through two problems for physics on a curved 
surface. The first one is light propaga?ng on a curved surface. Figure 1 (a) shows a circular cone with height 5	mm and a base 
diameter of 2𝜌! =	10 mm, joining to a flat surface. The flat surface has a circular hole of the same diameter so that as a whole, 
there is only one single surface with the cone part indica?ng the 'curved space.' The en?re surface, including the flat surface and 
the cone, have a very thin surface so that light can be effec?vely confined on such a surface. We have assumed the cone is joint 
smoothly to the flat surface. The second ques?on, being illustrated later, is about steady-state thermal conduc?on on a 
hemispherical surface. 
在 3D曲面上解决物理问题，如波传播、测地线和热传导，需要对度量和微分几何有深刻的理解。然而，对于具有空间对
称性的系统或采用坐标变换的情况，可以进行显著的简化。在这个问题中，我们将讨论在曲面上解决的两个物理问题。

第一个问题是光在曲面上传播。图 1（a）显示了一个高度为 5 mm、底直径为2𝜌! =	10 mm的圆锥体与一个平面相连接。
平面上有一个相同直径的圆孔，以便整体上只有一个单一的表面，圆锥部分表示“曲面”。整个表面，包括平面和圆锥

体，都有非常薄的表面，以便光可以有效地限制在这样的表面上。我们假设锥体与平坦表面平稳连接。第二个问题将在

后面进行阐述，它涉及到在半球面上的稳态热传导。 

 
Figure 1(a) depicts a curved surface created by connec?ng a circular cone to a flat surface with a hole of the same size as the 
cone's base. In Figure 1(b), we present a top view of this surface. Light confined to such a surface originates on the flat surface at 
the boWom, undergoes bending due to the cone, and exits in a different direc?on. 
图 1(a)展示了由连接到一个底部与圆锥体底部相同大小的圆孔的平面上的圆锥体所定义的曲面。图 1(b)是该曲面的俯视
图。被限制在这样的曲面上的光从底部的平面上开始，因圆锥体的弯曲而改变方向，最终以不同的方向出射。 

 
A. GEODESIC ON A ROTATIONAL SYMMETRIC CURVED SURFACE 旋转对称曲面上的测地线 

In mechanics, we are aware that when a system exhibits rota?onal symmetry, we can simplify the deriva?on of dynamics by 
applying the conserva?on of angular momentum. For instance, we can employ the conserva?on of angular momentum to derive 
Kepler's laws. In the current scenario, we consider a normalized angular momentum, denoted as L, which is defined as: 
在力学中，我们知道当系统具有旋转对称性时，我们可以使用角动量守恒来简化问题。例如，我们可以使用角动量守恒

来推导开普勒定律。在当前情况下，我们考虑一个归一化的角动量，记为 L，其定义如下： 

𝐿 = �̂� ⋅ 𝝆 ×
𝑑𝝆
𝑑𝑠 = 𝜌

2 𝑑𝜙
𝑑𝑠. 

𝜌!	

𝛾	

𝜌!
2 	

𝟐𝝆𝟎 = 𝟏𝟎𝒎𝒎	

𝜌/
2
	

𝑥	

𝑦	
𝑥	

𝑦	

𝑧	

𝜃	

(a)	 (b)	



Here, 𝝆 represents the projected posi?on vector on the two-dimensional x-y plane, given by 𝝆 = 𝑥𝑥1 + 𝑦𝑦1 = 𝑥1𝜌 cos𝜙 +
𝑦1𝜌 sin𝜙 , with the projected cone center as the origin. 𝜌 is the magnitude of vector 𝝆 and s is the arc length along the path of 
light on the surface. 
在这里，𝝆 代表了在二维 x-y平面上的投影位置矢量，由𝝆 = 𝑥𝑥1 + 𝑦𝑦1 = 𝑥1𝜌 cos𝜙 + 𝑦1𝜌 sin𝜙给出，其中投影锥体中心为原
点。𝜌是矢量𝝆 的大小。s是沿着曲面上光的路径的弧长。 

 

A1 

Given that the infinitesimal arc length on the cone sa?sfies 𝑑𝑠" = 𝑑𝑥" + 𝑑𝑦" + 𝑑𝑧" and 𝑧 = 𝑧(𝜌) is the 
height at that point, prove the geodesic on the cone sa?sfies 
假设圆锥体上的无穷小弧长满足𝑑𝑠" = 𝑑𝑥" + 𝑑𝑦" + 𝑑𝑧"，其中𝑧 = 𝑧(𝜌)是该点的高度，请证明圆
锥体上的测地线满足	

𝜌#(𝜙)" =
sin" 𝜃
𝐿" 𝜌"(𝜌" − 𝐿") 

Instead of using arc length 𝑠 to parametrize the geodesic, we have used 𝜙 for parametriza?on. 
这里，我们使用𝜙来参数化测地线，而不是使用弧长 s。 

3 points 

A2 For a light star?ng on the flat surface with a perpendicular distance of 𝜌!/2 to the origin, what will be 
minimal 𝜌 the light can go. 
对于从平面上距离原点垂直距离为	𝜌!/2 的入射光线，它能够到达的最小	𝜌	是多少？ 

2 points 

A3 What is the deflec?on angle 𝛾 by comparing the entering and exit rays on the flat surface? 
Hint: you may need to use ∫ $%

%&%!'(
= tan'( √𝑥" − 1 + 𝑐 

通过比较光线在平面表面的入射和出射角度，计算偏转角度	𝛾。 
提示：你可能需要用 ∫ $%

%&%!'(
= tan'( √𝑥" − 1 + 𝑐 

7 points 

 

A1: Coordinates: 

𝑥 = 𝜌 cos𝜙 , 𝑦 = 𝜌 sin𝜙 , 𝑧 = 𝑧(𝜌)	

⇒
𝑑𝑥
𝑑𝑠 =

𝑑𝜌
𝑑𝑠 cos𝜙 − 𝜌 sin𝜙

𝑑𝜙
𝑑𝑠 ,

𝑑𝑦
𝑑𝑠 =

𝑑𝜌
𝑑𝑠 sin𝜙 + 𝜌 cos𝜙

𝑑𝜙
𝑑𝑠 		 

Along the light path, the arc length elapsed in a small section is governed by 

𝑑𝑠" = 𝑑𝑥" + 𝑑𝑦" + 𝑑𝑧"	

= (cos𝜙 𝑑𝜌 − 𝜌 sin𝜙 𝑑𝜙)" + (sin𝜙 	𝑑𝜌 + 𝜌 cos𝜙 𝑑𝜙)" + 𝑧#(𝜌)"(𝑑𝜌)"	

= (1 + 𝑧#(𝜌)")(𝑑𝜌)" + 𝜌"(𝑑𝜙)"			 

Angular momentum: 

𝐿 = �̂� ⋅ 𝝆 ×
𝑑𝝆
𝑑𝑠 = 𝜌 cos𝜙

𝑑𝑦
𝑑𝑠 − 𝜌 sin𝜙

𝑑𝑥
𝑑𝑠 = 𝜌"

𝑑𝜙
𝑑𝑠 	

⇒
𝜌)

𝐿" = H
𝑑𝑠
𝑑𝜙I

"

= (1 + cot" 𝜃)𝜌#(𝜙)" + 𝜌" = csc" 𝜃 𝜌#(𝜙)" + 𝜌"					

⇒ 𝜌#(𝜙)" = sin" 𝜃 𝜌" J
𝜌"

𝐿" − 1K 

 

   

A2: The trajectory on the flat surface can be described by 

𝑥 =
𝜌!
2 , 𝑦 = 𝑠 + 𝑠!, 

where 𝑠! is a constant. Then the normalized angular momentum is 



𝐿 = 𝑥
𝑑𝑦
𝑑𝑠 − 𝑦

𝑑𝑥
𝑑𝑠 =

𝜌!
2 			, 

which is independent of 𝑠 as expected on the flat surface before entering the cone. We recognize that 𝐿 has also the meaning of 

perpendicular distance of the entering ray. Then from A1, 

𝜌#(𝜙)" ≥ 0 ⇒ 𝜌 ≥ |𝐿| =
𝜌!
2 				 

 

 

A3: Solution: We consider that 𝐿 is a constant of motion so that the entering and exit rays have the same perpendicular distance 

|𝐿|. We define 2𝜙! as the angle elapsed for the ray in the region of the cone and 2𝛽 = 2 cos'((|𝐿|/𝜌!) as the angle elapsed for 

the ray if it has not been deflected (see middle panel).  

 

(Method 1)  

To calculate 𝜙!, we flatten out the cone to a flat surface. The cone becomes a sector of radius 𝜌!/ sin 𝜃. The nearest projected 

distance |𝐿| (in A2) now becomes |𝐿|/ sin 𝜃 (see left panel). Therefore, the elapsed angle subtends a distance on the edge of 

cone as 

ℓ =
2𝜌!
sin 𝜃 cos

'( |𝐿|
𝜌!
	 

Back to the projected view (middle panel), we have the same distance ℓ = 2𝜌!𝜙!   so that we have obtained 

𝜙! =
1

sin 𝜃 cos
'( |𝐿|
𝜌!

=
𝛽

sin 𝜃		 

(Method 2) Alternatively, we can consider the ray has its 𝜌 gradually decreasing when it enters the cone until the nearest 

distance, |𝐿| from A2, for the first half of the ray trajectory, we choose the negative square root from A1: 

𝑑𝜌
𝑑𝜙 = −sin 𝜃 𝜌Q(𝜌/|𝐿|)" − 1		 

Now, we can integrate to get 𝜙! 



𝜙! = ∫ 𝑑𝜙 = −
1

sin 𝜃 ∫
𝑑𝜌/|𝐿|

(𝜌/|𝐿|)Q(𝜌/|𝐿|)" − 1
= R−

tan'(Q𝜌"/𝐿" − 1
sin 𝜃 S

*+*'

*+|-|

				

=
tan'(Q𝜌!"/𝐿" − 1

sin 𝜃 =
1

sin 𝜃 cos
'( |𝐿|
𝜌!
			 

After calculating 𝜙!: 

Then the deflection angle 𝛾 is governed by 

𝛾 = 2(𝜙! − 𝛽) = 2H
1

sin 𝜃 − 1I𝛽.		 

Now, substituting values for our particular example, |𝐿| = 𝜌!/2 and 𝜃 = 𝜋/4, we have 

𝛽 = cos'(
|𝐿|
𝜌!

=
𝜋
3 = 60°.		 

𝛾 = [√2 − 1\
2𝜋
3 = 49.7°.		 

as the deflection angle. 

Reference: The experiment and the flattened-out model are depicted in Phys. Rev. Appl. 11, 034072 (2019). 

 



B. HEAT CONDUCTION ON A SPHERICAL SURFACE (I) 球面上的热传导（I） 

A usual trick is to search for a coordinate transform from the curved surface (represented by the Cartesian coordinates (𝑥, 𝑦, 𝑧)) 

to a 2-dimensional coordinates system  𝑋 − 𝑌 plane so that the physics on the (𝑋, 𝑌)	just looks like a flat plane. For a unit 

spherical surface, such a map is the stereographic projection 

一個有用的技巧是寻找一个坐标变换，将曲面（由笛卡尔坐标(𝑥, 𝑦, 𝑧)	表示）映射到一个二维的 𝑋 − 𝑌 坐标上，使得在
𝑋 − 𝑌 坐标上的物理现象看起来就像一个平面。对于一个单位球面，这样的映射是立体投影。 

(𝑋, 𝑌) = a
𝑥

𝑧 + 1 ,
𝑦

𝑧 + 1b =
(𝜌 cos𝜙 , 𝜌 sin𝜙) 

Suppose now we consider heat conduc?on problem on such a spherical surface, i.e. a very thin shell of spherical surface. The 
steady-state heat conduc?on has the temperature profile sa?sfying the Laplace equa?on 
现在我们考虑在这样一个球面上的热传导问题，即一个非常薄的球面壳体。稳态热传导具有满足拉普拉斯方程(Laplace 
equa?on)的温度分布。 

∇"𝑇(𝜃, 𝜙) = 0 
while temperature profile is independent of radial distance 𝑟 in spherical coordinate (𝑟, 𝜃, 𝜙). The spherical surface is at radius  
𝑟 = 1. 
其中温度分布与径向距离	𝑟	无关。这个球面的半径为	𝑟 = 1。 

 

B1 

Prove 𝑇 sa?sfies Laplace equa?on on the (𝑋, 𝑌) coordinate:  
证明	𝑇	在	(𝑋, 𝑌)	坐标上满足 Laplace 方程: 

1
𝜌𝜕𝜌[𝜌𝜕𝜌𝑇\+

1
𝜌2 𝜕𝜙

2𝑇 = 0 

Hint: For convenience, we are given the Laplacian in spherical and cylindrical coordinates as 
为了方便起见，我们提供了球坐标和柱坐标下的 Laplacian 方程式。 
In spherical coordinate (在球坐标下) (𝑟, 𝜃, 𝜙): 

∇"𝑓 =
1
𝑟2 	𝜕𝑟[𝑟

2𝜕𝑟𝑓\+
1

𝑟2 sin 𝜃𝜕𝜃(sin 𝜃𝜕𝜃𝑓)+
1

𝑟2 sin2 𝜃
𝜕𝜙
2𝑓 

cylindrical coordinate (在柱坐标下) (𝜌, 𝜙, 𝑧): 

∇"𝑓 =
1
𝜌𝜕𝜌[𝜌𝜕𝜌𝑓\+

1
𝜌2 𝜕𝜙

2𝑓 + 𝜕𝑧
2𝑓 

4 points 

Solution:  

For the stereographic projection, a 𝜃 is mapped to a 𝜌 and 𝜙 is unaltered, serving both the azimuthal coordinate for both the 

spherical coordinate and the stereographic projected coordinate. Then, 

𝜌 =
sin 𝜃

cos 𝜃 + 1 = tan
𝜃
2			

⇒
𝜕𝜌
𝜕𝜃 =

1
2 sec

" 𝜃
2 , sin 𝜃

𝜕𝜌
𝜕𝜃 = 𝜌					

⇒ sin 𝜃 𝜕. = 𝜌𝜕*					 

For a 𝑟-independent 𝑇 profile, it satisfies the Laplace equation at 𝑟 = 1 as 

1
sin 𝜃 𝜕.

(sin 𝜃 𝜕.𝑇) +
1

sin" 𝜃 𝜕/
"𝑇 = 0 ⇒ sin 𝜃 𝜕.(sin 𝜃 𝜕.𝑇) + 𝜕/"𝑇 = 0.		 

which is now transformed to 

𝜌𝜕*[𝜌𝜕*𝑇\ + 𝜕/"𝑇 = 0.		 ⇒
1
𝜌 𝜕*[𝜌𝜕*𝑇\ +

1
𝜌" 𝜕/

"𝑇 = 0 

 



 

 

Now, the above figure gives the thin shell in the shape of lamp shade, which is in a hemi-spherical surface with a circular opening 
at the top. The whole shape s?ll has a rota?onal symmetry about the ver?cal z-axis. The boWom of the lamp shade is kept at 

temperature 𝑇0 (at 𝜃 = 1
"
	 for spherical polar coordinate) and the top is kept at temperature 𝑇2  (at 𝜃 = 𝜃2). 

现在，上图给出了一个薄壳，呈灯罩形状，是一个顶部有一个圆形开口的半球面。整个形状仍然具有旋转对称性。灯罩

的底部保持在温度 𝑇0（在球坐标下的 𝜃 = 1
"
 处），顶部保持在温度	𝑇2（在𝜃 = 𝜃2	处）。 

 

B2 Solve the temperature profile, as a func?on of 𝜃, with such rota?onal symmetry. 
解出具有旋转对称性的温度分布 𝑇(𝜃)，作为	𝜃	的函数。 4 points 

 

Solution:  

With rotational symmetric, 𝑇 is independent of 𝜙: 

1
𝜌 𝜕*[𝜌𝜕*𝑇\ = 0.			 

Then 

𝑇 = 𝛼 ln 𝜌 + 𝛽 = (𝑇2 − 𝑇0)
ln atan 𝜃2b

ln atan 𝜃22 b
+ 𝑇0						 
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B1 

Prove K sa?sfies Laplace equa?on on the (F, G) coordinate:  
证明	K	在	(F, G)	坐标上满足 Laplace 方程: 

1
X[:NX[:?O+

1
X2 [;

2? = 0 

Hint: For convenience, we are given the Laplacian in spherical and cylindrical coordinates as 
为了方便起见，我们提供了球坐标和柱坐标下的 Laplacian 方程式。 
In spherical coordinate (在球坐标下) (M, ;, 6): 

∇"P = 1
82 	[<N8

2[<\O+
1

82 sin D[=(sin D[=\)+
1

82 sin2 D[;
2\ 

cylindrical coordinate (在柱坐标下) (%, 6, (): 
∇"P = 1

X[:NX[:\O+
1
X2 [;

2\ + [>2\ 

4 points 

 
Now, the above figure gives the thin shell in the shape of lamp shade, which is in a hemi-spherical surface with a circular opening 
at the top. The whole shape s?ll has a rota?onal symmetry about the ver?cal z-axis. The boWom of the lamp shade is kept at 

temperature K) (at ; = *
"	 for spherical polar coordinate) and the top is kept at temperature K+  (at ; = ;+). 

现在，上图给出了一个薄壳，呈灯罩形状，是一个顶部有一个圆形开口的半球面。整个形状仍然具有旋转对称性。灯罩

的底部保持在温度 K)（在球坐标下的 ; = *
" 处），顶部保持在温度	K+（在; = ;+	处）。 

 

B2 Solve the temperature profile, as a func?on of ;, with such rota?onal symmetry. 
解出具有旋转对称性的温度分布 K(;)，作为	;	的函数。 4 points 

 
C. HEAT CONDUCTION ON A SPHERICAL SURFACE (II) 球面上的热方程(II) 

 



C. HEAT CONDUCTION ON A SPHERICAL SURFACE (II) 球面上的热方程(II) 

 

Now, we consider the top opening is 1lted about the y-axis in breaking rota1onal symmetry. Suppose the top opening is s1ll 
a circle on the spherical surface passing through (𝑥, 𝑦, 𝑧) = (0,0,1) and (sin 𝛼 , 0, cos 𝛼) as diameter and its normal is on 
the x-z plane. 
现在，我们考虑顶部开口围绕 y轴倾斜，破坏了旋转对称性。假设球面顶部开口仍然是一个圆，通过由	(𝑥, 𝑦, 𝑧) =
(0,0,1)	和 (sin 𝛼 , 0, cos 𝛼)	作为直径，并且其法向量位于 x-z 平面上。 

 

C1 

Determine where the top opening is mapped on (𝑋, 𝑌) plane through the stereographic projec?on map.  
通过立体投影映射，确定顶部开口在 (𝑋, 𝑌)	平面上的映射位置。 
Hint: the answer is s?ll a circle in 𝑋 and 𝑌 coordinates. 
提示：答案在 X和 Y坐标上仍然是一个圆。 

2 points 

C2 

Solve the temperature profile 𝑇(𝑋, 𝑌) when the boWom opening is kept at temperature 𝑇0 and the top is 
kept at temperature 𝑇2. You can leave your answer in terms of 𝑋 and 𝑌 coordinates. 
Hint: In the stereographic projected domain X-Y plane, Laplace equa?on is sa?sfied and you can further 
use general method of image, like the one used in solving electrosta?c problem by pueng two point 
charges on the X-axis with undetermined charges. 
解出温度分布函数 𝑇(𝑋, 𝑌)。底部开口保持温度𝑇0，顶部开口保持温度𝑇2。您可以用		𝑋	和	𝑌	坐标表
示您的答案。 
提示：Laplace方程仍然满足在立体投影后的 X-Y 平面上。你可以使用在解决静电问题時的镜像电
荷法，在 X 轴上放置两个待确定电荷的电荷。 

8 points 
8分 

 

C1: The two points of a diameter: 

	(𝑥, 𝑦, 𝑧) = (0,0,1) → (𝑋, 𝑌) = (0,0) 

	(𝑥, 𝑦, 𝑧) = (sin 𝛼 , 0, cos 𝛼) → (𝑋, 𝑌) = atan
𝛼
2 , 0b				 

Mapped circle has center (𝑋, 𝑌) = a(
"
tan 3

"
, 0b  with diameter (

"
tan 3

"
, or written as 

H𝑋 −
1
2 tan

𝛼
2I

"

+ 𝑌" =
1
4 tan

" 𝛼
2				 

 

C2:  



 

The Laplace equation is satisfied on the X-Y plane. 𝑇 = 𝑇0 on the unit circle with center at origin. 𝑇 = 𝑇2 on a smaller circle 

passing through origin and with center at a𝑎 = (
"
tan 3

"
, 0b. 

Equivalently to our thermal conduction problem, we can treat 𝑇 as an electrostatic potential also satisfying the Laplace equation. 

Here, we adopt the general method of image to obtain 𝑇 in (𝑋, 𝑌) space. Assume that we have two point charges on the X-axis 

with undetermined charges at the moment. We let the distance between them is 2𝐴 and the middle of the two coordinates is at 

𝑋! on the X-axis. Then, the potential for such a system is 

𝑇 = 𝑐( ln J
(𝑋 − 𝑋! + 𝐴)" + 𝑌"

(𝑋 − 𝑋! − 𝐴)" + 𝑌"
K + 𝑐".		 

An equipotential (same value of 𝑇) contour can be written as a circle with center on the X-axis: 

(𝑋 − 𝑋! + 𝐴)" + 𝑌"

(𝑌 − 𝑋! − 𝐴)" + 𝑌"
= 𝐾 ⇒ H𝑋 − H𝑋! +

𝐾 + 1
𝐾 − 1𝐴I	I

"

+ 𝑌" = JH
𝐾 + 1
𝐾 − 1I

"

− 1K𝐴"			 

where 𝐾 is an arbitrary number depending on the value of 𝑇. Now, we need the inner and outer circles in (𝑋, 𝑌) space map to 

different equipotential lines. Then, we have following equations for the centres and radii, 

𝑋! +
𝐾( + 1
𝐾( − 1

𝐴 = 𝑎,	 H
𝐾( + 1
𝐾( − 1

I
"

− 1 =
𝑎"

𝐴",											

𝑋! +
𝐾" + 1
𝐾" − 1

𝐴 = 0,	 H
𝐾" + 1
𝐾" − 1

I
"

− 1 =
1
𝐴",		 

Eliminating 𝐾( and 𝐾", we have 

(𝑎 − 𝑋!)" = 𝐴" + 𝑎", 𝑋!" = 𝐴" + 1, 

in which 𝑋! and 𝐴	 can be solved as 

𝑋! =
1
2𝑎 , 𝐴 = ±

√1 − 4𝑎"

2𝑎 				 

We let 

𝜇 =
1 + √1 − 4𝑎"

2𝑎 > 1, 𝜇'( =
1 − √1 − 4𝑎"

2𝑎 < 1	

Then 



 

𝑇 = 𝑐( ln J
(𝑋 − 𝜇)" + 𝑌"

(𝑋 − 𝜇'()" + 𝑌"K + 𝑐"				 

We probe the 𝑐( and 𝑐" coefficients by 

(𝑋, 𝑌) = (0,0) ⇒ 𝑇2 = 4𝑐( ln 𝜇 + 𝑐"	

(𝑋, 𝑌) = (1,0) ⇒ 𝑇0 = 2𝑐( ln 𝜇 + 𝑐"	

⇒ 𝑐( =
𝑇2 − 𝑇0
2 ln 𝜇 , 𝑐" = 2𝑇0 − 𝑇2 

Therefore 

𝑇 =
𝑇2 − 𝑇0
2 ln 𝜇 ln J

(𝑋 − 𝜇)" + 𝑌"

(𝑋 − 𝜇'()" + 𝑌"K + 2𝑇0 − 𝑇2						

=
𝑇2 − 𝑇0
2 ln 𝜇 lnJ

𝜌" − 2𝜇𝜌 cos𝜙 + 𝜇"

𝜌" − 2𝜇'(𝜌 cos𝜙 + 𝜇'"K + 2𝑇0 − 𝑇2	

=
𝑇2 − 𝑇0
2 ln 𝜇 lns

tan" 𝜃2 − 2𝜇	 tan
𝜃
2 cos𝜙 + 𝜇

"

tan" 𝜃2 − 2𝜇
'( tan 𝜃2 cos𝜙 + 𝜇

'"
t+ 2𝑇0 − 𝑇2 

where 𝜇 = (4&(')5!

"5
, 𝑎 = (

"
tan 3

"
. 

Alternative solution: 

If you know conformal map which maps circle to circle and preserves Laplace equation, we can adopt a conformal map 

(coordinate transformation) from (𝑋, 𝑌) to (𝑢, 𝑣) so that the two circles are concentric. 

 

By writing complex 𝜉 = 𝑋 + 𝑖𝑌 and 𝑤 = 𝑢 + 𝑖𝑣, we seek 

𝑤 =
𝑏𝜉 + 𝑐
𝜉 + 𝑑  

which maps the unit circle to unit circle and the inner circle to another circle with common center at 𝑤 = 0 

𝑏 + 𝑐
1 + 𝑑 = 1,

−𝑏 + 𝑐
−1 + 𝑑 = −1	

	
0 + 𝑐
0 + 𝑑 +

2𝑎𝑏 + 𝑐
2𝑎 + 𝑑 = 0 

By solving  𝑏, 𝑐 and 𝑑 from the above, we obtain the conformal map as 



𝑤 =
𝜇𝜉 − 1
𝜇 − 𝜉  

or 

𝑤 =
𝜇 − 𝜉
𝜇𝜉 − 1 

We choose the first solution which maps the inner circle to a circle with radius less than one, just for convenience. The radius of 

the inner circle is now mapped to a circle with radius |(0 − 1)/(𝜇 − 0)| = 𝜇'( < 1. 

From previous experience in B2 in solving 𝜙-independent Laplace equation, we have 

𝑇 = (𝑇2 − 𝑇0)
ln|𝑤|
ln 𝜇'( + 𝑇0	

=
𝑇2 − 𝑇0
2 ln 𝜇'( ln {

𝜇𝜉 − 1
𝜇 − 𝜉 {

"

+ 𝑇0	

=
𝑇2 − 𝑇0
2 ln 𝜇'( ln |

𝜉 − 𝜇'(

𝜇 − 𝜉 |
"

+ 2𝑇0 − 𝑇2	

=
𝑇2 − 𝑇0
2 ln 𝜇 ln {

𝜉 − 𝜇
𝜉 − 𝜇'({

"

+ 2𝑇0 − 𝑇2	

=
𝑇2 − 𝑇0
2 ln 𝜇 ln J

(𝑋 − 𝜇)" + 𝑌"

(𝑋 − 𝜇'()" + 𝑌"K + 2𝑇0 − 𝑇2 

 

 

 
 
 
 
 


