Problem 1: Error estimates of a gravitational wave experiment (30 points)
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The discovery of gravitational waves initiated an era of gravitational wave astronomy. In addition to the ground-based
gravitational wave observatories, gravitational wave observatories based on laser interference between satellites are also
planned, for example, the Taiji and Tiangin programs in China and LISA in Europe. Here, we study a simplified version similar

to the Tianqgin program.
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As illustrated in this figure, we consider three satellites surrounding the earth following circular orbits. They form an
equilateral triangle. They form an interferometry in the nearly vacuum environment near the earth. From the change of
interference patterns, the change of space distance is measured to detect gravitational waves. Here we will study the error
sources for Tiangin to reach its desired measurement precision.
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In this problem, we will use the physical constants and satellite parameters including:
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Newton’s gravitational constant 4=l 755 | JJH %1 G = 6.67 X 10711m3 /(kg s?)

Planck’s constant 3BT H 4T h = 6.626 X 1073*m?kg/s

Vacuum Permeability ELZEHE S8 uy = 1.257 X 107 kgm s~2 A~2

The mass of the earth MR &E M = 5.97 x 10%* kg

The radius of the earth HER 1% r = 6.37 X 10°m

The distance from a satellite to the center of the earth L 2B SH#L L EYEEES R = 108 m
The laser wavelength used by the satellite TLE2 {0 RE A2 = 1064 nm

The size of the optical system of the satellite TE Y FZGRKE D = 0.1m

Part A: Gravitational fluctuations on the orbit of the satellite TE #1386 F85 [ 73E5h

Al Here we only consider gravity from the earth and consider the earth as a homogeneous ideal ball. Give
the periodicity T of a satellite rotating around the earth. Please use second as the unit and give three 2 Points
significant figures. 245
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A2 Since the shape and density of the earth is inhomogeneous, the satellite will feel an additional
acceleration da in addition to the uniform circular motion. To simplify the calculation, let us model the
inhomogeneity of the earth as follows: Consider an ideal ball with mass M — 2m. Two additional point
masses (each has mass m) are put to diametrically opposite points on the equator of the earth. Assume
that the satellite orbit and the earth are in the same plane, with angle 8 between them. Give the
precise formula to calculate da.
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A3 Calculate all the possible periodicities for da. Please use second as the unit and give three significant
figures. 2 Points
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A4 In the R > r limit, give the leading order expression (the lowest nonzero order in the Taylor expansion .
2 Points
of r/R) for da. 2 45
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A5 Estimate the typical value of §a (an error within two orders of magnitude will be considered as correct). 3 Points
fliit da WYHALEHE CREERNERZ NI IER) - 3n
A6 In satellite experiments, we are interested in the gravitational waves with a particular periodicity (such
as periods between 1-1000 seconds). Thus, if the periodicity of the gravitational fluctuation is too long,
it will not interfere the gravitational wave measurement. Assume the satellite is co-rotating in the same
direction with the spinning direction of the earth. In the Taylor expansion of da, calculate the
component with period closest to 1000s. Denote this component as §a, 0. Estimate the value of 3 Points
8a4090 / 6a for 8 = /3. (an error within two orders of magnitude will be considered as correct) 34
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A1l Solution:
v? _ GM GM
P

T = ? = 3.15 x 105s.

A2. Solution :
G(M-2m) Gm (R-rcos6) Gm (R+r cos )
8ax = R2 - 3 - g
(R241r2-2R71rcos8)2 (R24+r24+2Rrcosf)2
Gmrsinf Gmrsin @
da, = -

g 3
(R?2+12-2R7rcos6)z  (R?+r242Rrcosh)Z

A3. Solution:

Note that the above expression has a symmetry of cos 8 < — cos 6. Thusin 8, the period is 7 (i.e., 1/2 of the period of the

21 rotation). In time, there are two possibilities: the earth co-rotate or counter-rotate with the satellite. Note that the earth




period is a day = 86400s. Thus, the two possible periods are
# = 3.39 x 10* s (counterrotate), or 5.95 X 10* s (corotate).

+ 5
864007 3.147X10

A4: Solution:

Taylor-expand to second order (note that the first order in /R result cancels):

36mr2(1-3 cos? 6)
R* ’

da, =

__ 3Gmr?sin26
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A5: Solution:

There can be many reasonable ways to estimate. For example, one can consider the density difference between the rock

and the sea. Thus m can be estimated using

103kg m~3 X (average depth of the sea 3.5 x 103m) X (10% of the earth surface area ) ~ 1.8 x 102°. Thus, for a typical
value of 8, for which 2 — 8 cos? 8 doesn’t cancel to extremely small values,

da ~ 1072 m/s? (Note: the same order of magnitude can be obtained using precise modeling of the earth.
Answers ranging from 107 ~ 107! can be considered correct.

A6: Solution:

Considering that in the co-rotating case, the period of the system is 119098s. To extract the component with 1000s period,
Taylor-expand to the (cos 8)*2° term (note: there is no (cos 8)''° term. Expanding to (cos 8)*'8 is equally fine).
Then for n=120:

Note that the % (g + 1) (z +(n- 1)) almost cancels the 1/n! in the Taylor expansion (the difference is at the order v/n,
which is within the error allowance).

2"t R cos™
6611000 _ RZTL+2

oa oa

= 10—14—1

Note: taking n=118 the result is 107139, also considered correct. Also note that in reality (when we go beyond the current
toy model), the higher order multiples will dominate da; .

Part B: Free electrons from the solar wind XfHX\ B E FHEF

Consider the laser signal between the satellites. Although the space between satellites is close to the vacuum, but it is not
the absolute vacuum. In particular, solar wind will introduce free electrons. Let the number density of the free electrons be
N,, the electric charge of an electron be e > the electron mass be m,. And we ignore other media apart from these

electrons.
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B1 Assume that the electrons move freely in the electric field produced by the laser. Calculate the
acceleration of the electron dv, /dt as a function of the electric field E produced by the laser. 1 Points
WO £ HHEE) » SREFAYIIERE dv. /dt 538064/ E Z RIEY5% 143
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B2 Calculate the time dependence of the current from the free electrons. 2 Points
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B3 Calculate the phase speed of the laser v, in the environment of the free electrons (since v, is very
close to the speed of light, the higher order difference between v, and the speed of light can be
ignored).
2 .
Hint: from the Maxwell equations, one can derive that ZTE — c*V2E + ¢ y, % =0. 3 go/'QtS
. . \ \ . e . 7]
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B4 Let N, = 10 cm™3. Calculate the phase error of the laser between two satellites. In other words, if
there were no free electrons, the laser waveform arrived at a satellite is cos 8. Now with free electrons,
the same wave form at the same moment changes into cos(8 + §0). Calculate the value of §6. 3 Points
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B1: Solution:
dve
dt
B2: Solution:
d] N,e?’E
—=_¢eN
dt ¢ e gt m,
B3: Solution:

B 1 9E
FromVxE——E,VXB—u0]+C—ZE,

92E
at2

It’s solution in frequency space is

N, e?

e
w? = c?k? + c?uy—=
me

Thus, the phase velocity

w Nge?
=2= |2 2 e o |c2 2
vp—z—\/c + ccUg —\/c + c2lg

mek?

Nee2A2

472 My

B4: Solution:

—c(1+—

—c2V2E+czu0%=O(Wherer(VxE)=V2E—V(V~E)=V2E)

The wave can be written as cos(kx — wt + 8), where 0 is the initial phase at the emitter t = 0, x = 0. The receiver has a

distance x = /3 R and the arrival time is t = /3 R/c.
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With free electrons, k = %(1

) . Thus inserting x and ¢,




56 = —

Cc
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Part C: Shot noise Bk

Any precision measurements are limited by the uncertainty principle of quantum mechanics. Assume that every photon’s

arrival time at the detector can be considered as independent stochastic processes. Also, in actual experiments, phase error

of the laser is more important. But here for simplicity, here we only estimate photon number errors.
FHEETIE T #EZEETHFHIGFL « W BEFSF - BothE e EEATRN ES AT (R 202 M A RE
WIEELE - 5590 » SRE R HAUHE S WO AR IR - (B X IR T RIERE I - (Uh e FERE -

Cc1 During a certain period of time, the average photon number in the laser is N. In this case, the error in
the photon number measurement in the laser is AN = N%. Find a. 1 Points
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c2 If we request that in one second, the relative error of photon number measurement is ATN <3x107°.
Calculate the minimal power of laser P, that the satellite should receive. (3 points) 3 Points
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Cc3 Assume the laser arrived at a satellite is emitted from the other satellite from the three-satellite system.
Estimate: in an ideal case, what is the minimal emission power of laser P,,;; from the other satellite )
(can be considered to be correct if the order-of-magnitude is correct). 3 go/'QtS
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C1: Solution : a = 1/2.

C2: Solution:
We thus need the minimal number of photon N = 1.11 x 10! per second.

The energy of each photonis E = hv = h% =1.87 x 10719

Thus the minimal power at reception is P.oc = 2 X 1078W.

C3: Solution 1: Using Gaussian laser beam and the formula

- (n D?
Pemit 4R A

)2 = 545x107°.

Thus, Popie ~ 3.67W

Solution 2: Estimation from the uncertainty principle

Within the satellite optics system diameter D, for each photon, the momentum uncertainty of the laser is Ap ~ h/D. Thus

the minimal spread angle is 1/D. Over a distance R, the minimal radius of the spot is A R/D. Considering the receiver radius

is at most D, too. Thus,

Prec ~
Pemit

2
%) ~8.83%x107°.

Ry

Thus, Popie ~ 2.26W




Problem 2: Metric-modified geodesic and heat conduction (30 points)
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Solving physics, such as wave propagation, geodesics, and thermal conduction, on a curved surface in 3D requires a thorough
understanding of metrics and differential geometry. However, there can be significant simplifications for systems with spatial
symmetry or by adopting coordinate transformation. In this question, we will go through two problems for physics on a curved
surface. The first one is light propagating on a curved surface. Figure 1 (a) shows a circular cone with height 5 mm and a base
diameter of 2p, = 10 mm, joining to a flat surface. The flat surface has a circular hole of the same diameter so that as a whole,
there is only one single surface with the cone part indicating the 'curved space.' The entire surface, including the flat surface and
the cone, have a very thin surface so that light can be effectively confined on such a surface. We have assumed the cone is joint
smoothly to the flat surface. The second question, being illustrated later, is about steady-state thermal conduction on a
hemispherical surface.
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Figure 1(a) depicts a curved surface created by connecting a circular cone to a flat surface with a hole of the same size as the

cone's base. In Figure 1(b), we present a top view of this surface. Light confined to such a surface originates on the flat surface at
the bottom, undergoes bending due to the cone, and exits in a different direction.
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A. GEODESIC ON A ROTATIONAL SYMMETRIC CURVED SURFACE Jg %% Mo #k il T _E By i3 %

In mechanics, we are aware that when a system exhibits rotational symmetry, we can simplify the derivation of dynamics by
applying the conservation of angular momentum. For instance, we can employ the conservation of angular momentum to derive
Kepler's laws. In the current scenario, we consider a normalized angular momentum, denoted as L, which is defined as:
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Here, p represents the projected position vector on the two-dimensional x-y plane, given by p = xX + y9§ = Xp cos ¢ +
yp sin ¢ , with the projected cone center as the origin. p is the magnitude of vector p and s is the arc length along the path of

light on the surface.
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Given that the infinitesimal arc length on the cone satisfies ds? = dx? + dy? + dz? and z = z(p) is the
height at that point, prove the geodesic on the cone satisfies
AR R EHITESS /NI Eds? = dx? + dy? + dz® » Hiz = z(p) /2% 509 - 1EIEHE

Al HEMA_ERIIN G g 3 points

p'(¢)?* = p*(p* —L?)

Instead of using arc length s to parametrize the geode5|c we have used ¢ for parametrization.
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A2 For a light starting on the flat surface with a perpendicular distance of p,/2 to the origin, what will be
minimal p the light can go. 2 points
YT MF A EE S S EREES Y po/2 Y ASELL - BRE AN/ Np 2%/ ?

A3 What is the deflection angle y by comparing the entering and exit rays on the flat surface?

Hint: you may need to use fx\/% =tan"'Vx2—-1+¢
I EE BT yﬁ%@ﬂﬁ/\%ﬁ*ﬂﬁ%ﬁﬁ%fﬁ WEREAEy
PR IRATRERRZA [ \/—— tan"'vVx2—1+c

7 points

Al: Coordinates:

x=pcosp, y=psing, z=z(p)

dx dp ~do dy dp do
ﬁg—gcosqb—psmd)g, a—asm¢+pcos¢£

Along the light path, the arc length elapsed in a small section is governed by

ds? = dx* + dy* + dz?
= (cospdp — psinpdp)? + (sing dp + pcosp dp)? + z'(p)?(dp)?
= (1+2'(p)*)(dp)? + p*(d)?

Angular momentum:

Lo dp dx  ,d¢
=2 pxd——pcosd)— psmd)——p s

p ds\® 2 ()2 2 20 0/ ()2 2
=>L—2=(E) =(1+cot?0)p'(p)* +p*=csc?Bp'(p)*+p

02
= p'(¢p)? = sin? 4 p? <——1)

A2: The trajectory on the flat surface can be described by

where s, is a constant. Then the normalized angular momentum is



which is independent of s as expected on the flat surface before entering the cone. We recognize that L has also the meaning of

perpendicular distance of the entering ray. Then from A1,

, p
p(¢)220=>p2|LI=7°

A3: Solution: We consider that L is a constant of motion so that the entering and exit rays have the same perpendicular distance
|L]. We define 2¢), as the angle elapsed for the ray in the region of the cone and 28 = 2 cos™*(|L|/p,) as the angle elapsed for

the ray if it has not been deflected (see middle panel).

Flattened out Projection of 3D on x-y plane 3D
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To calculate ¢, we flatten out the cone to a flat surface. The cone becomes a sector of radius p,/ sin 6. The nearest projected

(Method 1)

distance |L| (in A2) now becomes |L|/ sin 6 (see left panel). Therefore, the elapsed angle subtends a distance on the edge of

cone as

20, LI
—_ oS —
sin @ Do

Back to the projected view (middle panel), we have the same distance £ = 2p,¢, so that we have obtained

1 ILI _ B
= — -1__ =
o sin @ €os po sin@

(Method 2) Alternatively, we can consider the ray has its p gradually decreasing when it enters the cone until the nearest

distance, |L| from A2, for the first half of the ray trajectory, we choose the negative square root from Al:

d
£= —sin6 p/(p/ILD? — 1

Now, we can integrate to get ¢,



— d —_— —
P =140 = "G5! Gy =1 sin 6
_tan”'y/pg/I2—-1 1 Ll

: = ——0s
sin8 sin @ Do

=L
1 dp/|L| | tan™'{p?/L? - 1r .
P=Po

After calculating ¢:
Then the deflection angle y is governed by

Sin

v =260~ B) =2(55-1)8.

Now, substituting values for our particular example, |L| = p,/2 and 8 = /4, we have

wl N

L
B = cos_llp—| = — = 60°.
0

y=(2- 1)2?” = 49.7°.

as the deflection angle.

Reference: The experiment and the flattened-out model are depicted in Phys. Rev. Appl. 11, 034072 (2019).



B. HEAT CONDUCTION ON A SPHERICAL SURFACE (I) 3kTE1_ERIFVES (1)
A usual trick is to search for a coordinate transform from the curved surface (represented by the Cartesian coordinates (x, y, z))
to a 2-dimensional coordinates system X — Y plane so that the physics on the (X,Y) just looks like a flat plane. For a unit

spherical surface, such a map is the stereographic projection

—{EH AR TR T AR - R (R REEAR(x, y,Z) PR ) MUNE— DA X - Y AR L (HSAE
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&, )_(z+1 Z_}:_l)=(pcosq,’),psin¢)

Suppose now we consider heat conduction problem on such a spherical surface, i.e. a very thin shell of spherical surface. The
steady-state heat conduction has the temperature profile satisfying the Laplace equation
PAEBA B AR — P BRI _EAVRVE SRR > BI— N EEEAVERI A - FSIAMEe S BA W e i il /77 (Laplace
equation)f R E 74 »

V2T(6,¢) =0
while temperature profile is independent of radial distance r in spherical coordinate (7, 8, ¢). The spherical surface is at radius
r=1.
AR SRR r T - XPERERFEE N r=1-

Prove T satisfies Laplace equation on the (X,Y) coordinate:

IEBA T £ (X, Y) 2445 L3 2 Laplace 7?&
—ap(pa T) + 6¢T 0

Hint: For convenience, we are given the Laplacian in spherlcal and cylindrical coordinates as

R T ITERRL - BT T ERIARRIAEALAR THY Laplacian T2 -

Bl In spherical coordinate (fﬂij;ﬁ?) (r,6,9): 4 points
Vif =— a (20.f) + = 1 506(sin00,f) + %agf
sin
cylindrical coordinate (T*EJ:’FTT) (p, P, z)
1 15 2
Solution:

For the stereographic projection, a 8 is mapped to a p and ¢ is unaltered, serving both the azimuthal coordinate for both the

spherical coordinate and the stereographic projected coordinate. Then,

_ sin @ _y 7]
p_c050+1_an5

op 1 0 . 0dp
:%—Esec > sme%—p

= sinf dg = pd,

For a r-independent T profile, it satisfies the Laplace equationatr = 1 as
1 1 ) ) )
S—ag(smeagr) P = 6¢ =0=sin0dy(sinf9yT) + 95T = 0.
which is now transformed to

pd,(pd,T) + 03T =0. =— a(paT)+ 05T =0



Now, the above figure gives the thin shell in the shape of lamp shade, which is in a hemi-spherical surface with a circular opening

at the top. The whole shape still has a rotational symmetry about the vertical z-axis. The bottom of the lamp shade is kept at
temperature T}, (at 6 = % for spherical polar coordinate) and the top is kept at temperature T, (at 8 = 6,).

WA - ERISGH T —1NE% - 2ITERIR > B2— 0 IEAE — MR CRVEEKE © BAEIRTIARA e PRME © ST
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B2 Solve the temperature profile, as a function of 8, with such rotational symmetry. 4 points
ftt B R AR RIS 946 T(0) > 1E7 0 HIREY - P
Solution:

With rotational symmetric, T is independent of ¢:

Then

T=ahnp+p=(T,—T,)



C. HEAT CONDUCTION ON A SPHERICAL SURFACE (11) BRTE A T2 (1)

side view

Now, we consider the top opening is tilted about the y-axis in breaking rotational symmetry. Suppose the top opening is still
a circle on the spherical surface passing through (x,y,z) = (0,0,1) and (sina, 0, cos a) as diameter and its normal is on
the x-z plane.

BAE > FATHEINETF LI ESE y HiiR: - BER TR wiie » BORERETHE A L2 — N E - @il (o y,2) =
(0,0,1) fl (sina, 0, cos &) fENEFE » H HEIEMEAL T %z FHE b -

Determine where the top opening is mapped on (X, Y) plane through the stereographic projection map.
ARSI - WE TELH AR (X, Y) ~PE AT & -

Hint: the answer is still a circle in X and Y coordinates.

PR B EAE X ALY AR B

Solve the temperature profile T (X, Y) when the bottom opening is kept at temperature T, and the top is
kept at temperature T;. You can leave your answer in terms of X and Y coordinates.

Hint: In the stereographic projected domain X-Y plane, Laplace equation is satisfied and you can further
use general method of image, like the one used in solving electrostatic problem by putting two point

2 charges on the X-axis with undetermined charges. g
FRHDRE AR T(X,Y) « JREFF OREERET, » T CORFHRET, - ZATLUH X F1Y Aedrsk 7
REHEE -

F27r ¢ Laplace JTARATI 2R AL LAATERZIEHY XY S _E o IRF] LASE A e o [ R Y S e
{60 » AE X il BB PR M E FRLAET Y LT -

Cl 2 points

8 points

C1: The two points of a diameter:

(x,y,2) = (0,0,1) - (X,Y) = (0,0)
a
(x,y,2) = (sina,0,cosa) - (X,Y) = (tanE,O)
. 1 a . . 1 a .
Mapped circle has center (X,Y) = (Etan;, 0) with dlameterztan;, or written as

(X 1t a>2+-Y2-1t 22
2?:ln2 —4-611’12

C2:
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The Laplace equation is satisfied on the X-Y plane. T = T}, on the unit circle with center at origin. T = T; on a smaller circle

passing through origin and with center at (a = %tan%, 0).

Equivalently to our thermal conduction problem, we can treat T as an electrostatic potential also satisfying the Laplace equation.
Here, we adopt the general method of image to obtain T in (X, Y) space. Assume that we have two point charges on the X-axis
with undetermined charges at the moment. We let the distance between them is 24 and the middle of the two coordinates is at

X, on the X-axis. Then, the potential for such a system is

— X=X, +A)z2+7Y2 N
SO\ —x, Az +rz) T

An equipotential (same value of T') contour can be written as a circle with center on the X-axis:

(X_X°+A)2+Y2—K:<X (X +K+1 ))2+Y2— (K+1)2 1) 42
(Y —X,—A)?2+Y2 T K -1 S \\k -1

where K is an arbitrary number depending on the value of T. Now, we need the inner and outer circles in (X,Y) space map to

different equipotential lines. Then, we have following equations for the centres and radii,

K, +1 Ky + 1\? a?
Xotg —14=% <K1—1) T A
K,+1 K, + 1\? 1
Xot g, —74=0 <K2—1) 1=

Eliminating K; and K,, we have
(a—X,)? = A% + a?, Xt =4%+1,

in which X, and A can be solved as

P A_+\/1—4a2
°7 2a’ T 2a
We let
1+V1—4a? . 1-VI—4a?
s 2a > 1 = 2a 1

Then



We probe the ¢; and c, coefficients by

X—w?+v?
T=Clln<(X—y_1)2+Y2 +c,

X,Y)=(00,0)=>T,=4c;Inu+c,
XY)=01,0)=>T, =2¢Inu+c
T, —-T,

>0 =—=—
@ 2Inu

'CZ - ZTb _TL‘

X —pw?+v?

n<(X_H_1)2 + YZ) + ZTb _TL‘

p® — 2up cos ¢ + p°

2T, — T,
n<p2—2#‘1pc05¢>+u‘2)+ bt

tan? % —2u tangcos ¢ + u?

Therefore
T, — T
"
2Inu
_Tt_Tb
" 2lnu
_Tt_Tbl
~ 2lnu n
where,u=M a=1tan.

2a '’ 2 2

Alternative solution:

tan? g —2u~?t tan%cos ¢+ u?

+ ZTb _Tt

If you know conformal map which maps circle to circle and preserves Laplace equation, we can adopt a conformal map

(coordinate transformation) from (X, Y) to (u, v) so that the two circles are concentric.

Y
4

h

A%

AN

E=X+iY

A\ 4

@

w=1u-+iv

By writing complex & = X +iY and w = u + iv, we seek

_bS+c
Y d

w

A

which maps the unit circle to unit circle and the inner circle to another circle with common centeratw = 0

b+c —b+c
Tvd " Titxd
0+c 2ab+c

0+d  2a+d

By solving b, ¢ and d from the above, we obtain the conformal map as



Ve

or
_Kr=9
pé—1

We choose the first solution which maps the inner circle to a circle with radius less than one, just for convenience. The radius of

the inner circle is now mapped to a circle with radius [(0 — 1) /(u — 0)| = ™ < 1.

From previous experience in B2 in solving ¢-independent Laplace equation, we have

T=(T,— Tb) Tt Ty
|uf -
21nu‘1
T,—T, |§—u!
= 2T, — T
2Inp—?t ol =1

=Tt_Tbn §—u
2Inp 1§ —pt
T, =T, [ (X—p?+Y?

= 2T, — T,
2Inpu <(X—/,t‘1)2+Y2 tely =1

+ ZTb _Tt




