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Problem 1: Bose Einstein Condensation (22 points) 3% .- RI#HEEER (2243)

Planck’s constant ¥ B 7 % 4 /= 6.626 x 107* Js
Boltzmann constant $i7/)X2% S 40 kg = 1.381 x 102 JK!

In nature, particles are classified into two different kinds: bosons and fermions. Bosons (e.g.
photons) are particles that like to be together in the same state. In contrast, fermions (e.g.
electrons, protons and neutrons) are unlikely to go into an already occupied state according to the
Pauli exclusion principle. Statistical mechanics tells us that when a system of bosons reaches a
critical density in a trap it undergoes a transition that a large number of bosons will have a
tendency to occupy the same lowest-energy state. This phenomenon is called Bose-Einstein
condensation. The following figure shows how bosons and fermions occupy energy states when
the temperature approaches 0 K.
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Recent development of trapping and cooling ultracold atoms (e.g. Sodium, Rubidium and
Lithium atoms) paved the way for the observation of Bose-Einstein condensation of atomic gases
in ultracold temperature (Nobel prize in physics 2001), which had been theoretically predicted by
Bose and Einstein in 1924. Several different cooling techniques have been employed to achieve
ultracold temperature around 10-100 nK (note 1 nK = 107°K). For example, the hot Rubidium
atoms prepared at 400 K are cooled down to ~1mK through the Laser cooling techniques (Nobel
prize in physics in 1997). Such cold atoms prepared by laser cooling technique are typically
loaded into the external trap (produced by either magnetic or optical fields) for further cooling as
shown below.
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A. Maxwell- Boltzmann distribution and the thermal de Broglie wavelength of the atoms
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Consider a dilute gas of atoms. The inter-particle interactions are very weak. In this case, the gas
can be described by the ideal gas model in which the particles move freely inside a stationary
trap without interacting with one another except for very brief elastic collisions to reach thermal
equilibrium.
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In this atomic gas system, the probability distribution of the particle speed v is given by
Maxwell-Boltzmann distribution,
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m \3 X _mv?
= 4_ 2k T’
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where m is the mass of the atom, kg is the Boltzmann constant, and T is the temperature of the
gas in the unit of Kelvin [K].
HbmZ2EFNAE, kpalUR2e®EE, T2URRE, BA0NK].

Al | Derive the most probable velocity vy, of a particle at temperature T. 2 points
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f'(v)=0 = v, = |2
m

(Remarks: 1 point if only f'(v) = 0 is given)

Based on the most probable velocity v, obtained in A1, write down the

characteristic de Broglie wavelength 4,5 of the particle in an atomic gas at
A2 | temperature T.
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2 points

The de Broglie wavelength of the particle is
h .
Agg = — (1 point)

The characteristic de Broglie wavelength is estimated by replacing the velocity by the
characteristic velocity vmp as

2

Agg = (1 point)

kaB T

Since particles in a gas of atoms have different speed following Maxwell-Boltzmann

distribution, it is useful to consider the thermal de Broglie wavelength (A;) defined as A, =
1

Agp X ™ 2 . Here we derive the Bose-Einstein temperature 7, for a gas of N non-interacting

(bosonic) atoms of mass m in a three-dimensional box with volume V. We will consider the
simple physical picture that Bose-Einstein condensation occurs when the characteristic inter-
particle distance between bosonic atoms becomes comparable to the thermal de Broglie
wavelength Ar. (Planck’s constant 7 = 6.626 x 10°* Js, Boltzmann constant kg = 1.381 x 1072
JK™
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What is the expected 7. of the N = 10° atoms of mass m = 1.445 x

A3 1(3_25 kg trapped in the trap with a volume of V= 10°um3? (1 um’ =10"* | 3 20;;“8
m

(EAFN V= 10°um’fFfEef, i3k N =10" D& m = 1.445 X
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At the Bose-Einstein temperature Tc, the inter-particle separation is equal to the de Broglie
wavelength as

1

h? V\3 . . i . . . .
Agp = e (E)S (1 point for identifying the expression of the inter-particle separation)

Therefore, the T¢ is given by

2
_ h? N\3 .
TC - 2mmkp (V) (1 pomt)
(Remarks: Note that this is an estimate, hence any final numerical result from an estimation

2

A h? (N\3
containing ~-— (7)3 can be regarded as correct.)
B

For the given parameters, N = 10° atoms and trap volume V = 10° um®, T, ~ 35 nK. (1 point)
2
N\3
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B. Evaporative cooling in an external trap fFESMTBRHYZE S SH]

(Note: The exact result is T, =~ 0. 527

The temperatures reached by laser cooling are extremely low (< 1 mK), but they are not cold
enough to realize Bose-Einstein condensation. To date, Bose-Einstein condensation of alkali
atoms has been achieved by using evaporative cooling after atoms are loaded into the external
trap. During evaporative cooling, when atoms escaping from a trap have a kinetic energy higher
than the average energy of atoms in the trap, the remaining atoms become cooled.
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In the following problems in part B, we will estimate the effect of evaporative cooling. For
atoms trapped in a box of fixed volume and having no heat exchange with the surroundings, we
assume that an average energy of trapped atoms is € and a small number of atoms |AN| are
evaporated within a short time At with an average energy of (1 + )e where g > 0. During the
process, the small change in the number of atoms AN < 0 leads to the change 4e < 0 in the

average energy of the remaining atoms. We also assume that |%| « 1 and |%| « 1.
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THEHAN < 0 4N, SERAE THI VIR RIVE (bde < 0 - Bl THERER]E] « 1
A3 « 1.

[Remark: In the derived relation, you may ignore the term %AWN since % « 1 and |%| K 1]
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81 Derive the relation between Ae and AN with 5, e and N. 3 points
R B efIN, #S Aefll AN [B]H5 % - 34

The average energy per atom after atom loss AN must be € + Ae.
Total (mechanical) energy of (N + AN) atoms after atom loss = (Ne + (1 + $)€eAN)
Therefore, we have a relation:

__ Ne+(1+pB)eAN .
€+ Ae = =i (1 point)
Then
B ATN = % %ATN (1 point for steps)
and
B AWN = % (1 point)
by ignoring the second order term as |—| | | « 1.

Now we consider cold atoms at the initial temperature of T; = 200uK in a trap. Assume that we
remove 1% of atoms (i.e. = 0.01) during each time period At and § = 2.
ﬂf&ﬂ%ﬁﬁ*%qﬁ¥ PR Ty = 200uK. (B TR BT [A] ATHA A 255k
16T (B[S =0.01) » 3HE = 2.

Then estimate the final temperature Ty of atoms after the evaporative cooling .
. ) 3 points
B2 | over the total time period of 350Ar. 343
UG TE350ATHY S [H SN, SRS A SR TR ZORET, -
From the result of B1, we know f A—N — AT—T. (1 point)
For each time period A4z, the temperature changes:
AT AN .
Tafter = Tbefore + AT = Tbefore (1 + before) Tbefore (1 + d ) (1 pOIﬂt)
Here note that AT < 0 and AN < 0.
Therefore, after 350 time period Az,
pan)3>0 350 5 :
ﬂmm=( —77) Titial = (1 — 2 X 0.01)3%° x (2 x 105)nK (1 point)

=169.8 nK (1 point)
[Remarks : Alternative approximation may give slightly different temperature. The final
temperature Ty,4 between 160 nK and 180 nK can be regarded as correct.]



C. Bose-Einstein temperature T in a harmonic potential
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In a real experiment with ultracold atomic gases, a gas of bosonic atoms is trapped in a three-
dimensional harmonic trap generated by the laser beam or the magnetic field. Here we consider a
three-dimensional trap characterized by the harmonic potential:
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Consider the fact that ultracold atoms are oscillating around the bottom of the
trap with the characteristic trapping frequency w,/2z along the i-direction. .
C1 | Derive the characteristic volume confining the atoms in terms of 7'and wy, . 3 gcgglts
FEEL RN, E | T RNRHERERATRN o/2r o 15
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Along the x-axis, the characteristic kinetic energy of the atom is given by %kBT from the kinetic
theory of the ideal gas. Then the maximum displacement Ry of the atom trapped in the harmonic

potential Uf,, = %mw,%R,% is given by
%kBT = %m w2R? (2 points)

and
kgT
R, = -
mws
In a similar way, one can derive
kgT
Ry, = 2
ma)ylz
Therefore, the characteristic volume V is given
3
(M)i
— m A
V~R.R,R, = Y (1 point)
[Remarks: Note that this is an estimate, hence any final numerical result from an estimation
()’
containing ~ —"—~—can be regarded as correct.]
WxWy Wy

Derive the Bose-Einstein condensation temperature 7, of the atoms trapped

co in‘a\harmoniyc trap (Eonsidereq in Part C1 in terms of o; and N.‘ | 2 points
WHES C1 AT R TR -2 A R IR T, B% | 24
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The characteristic inter-particle separatlon is glven by
kgT
(ﬁ) ~N'3 ( - ) (wxwywz) (1 point)

1
Considering Ap~ (%)3 =
14
T = L\/_ (wywyw,)*N3 (1 point)
1 4

Note: The exact result is T¢ = 0.15-— (wxwywz) N,
[Remark: Note that this is an estlmate hence any final numerical result from an estimation

L q
0. .a 1 ==
containing ~ = h(w,wy,w,)*N3 can be regarded as correct.]

What is the Bose-Einstein condensation temperature T, of the N = 10 atoms
of mass m = 1.445 x 1072°kg in the harmonic trap with trapping

c3 frequencies wy /2 = wy/2w = w,/27 = 100 Hz? 1 point
WERF A N = 10*DET, BN R THIFTEIm = 1.445 X 14y

10 kg, WEEIEN 0f2r = oyfl21 = 027 =100 Hz. >RG5 K
BRI Teo

L

h z
From the result of part C2, T, = P (wywyw,)*N3.
Using wy = wy = o, = 27 x 100 rad/s, N = 10*, 7. = 259.1 nK. (1 point)

Note that the evaporative cooling is efficient enough to achieve the Bose-Einstein condensation.
R, RS HIATRER B DS P (-8 R I EE

D. Adiabatic cooling by slowly expanding the trap #3218k T4 FEH]

Cooling atomic gases to lower temperature has been motivated by the quest to observe new
forms of matter such as superfluid. However the evaporative cooling we discussed in part B is
not always preferable since a number of atoms leave the trap during the process. In this part we
consider a different cooling technique (so-called adiabatic cooling) by slowly expanding the trap
without losing atoms.
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Calculate the fraction of atoms remaining in the trap after the evaporative
D1 | cooling described in part B2.
I HAE B2 M R 7 A 2 )5, BAEBE IR 7 140

1 point
145




Fraction of remaining atoms = (1 — 0.01)3>° = 0.03 (1 point)

Consider N atoms in an external harmonic trap with trapping frequencies of wy = wy = w©, = 2xf,

at the temperature 77 = 105 nK = 1.05 x 1077 K. From now on, we assume that the whole atomic
gas can be regarded as a monoatomic ideal gas. At this stage, the atomic gas has the pressure P,

and the volume V| as described in the figure below.
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Now consider the adiabatic decompression process of N atoms trapped in a harmonic trap. For

this we adiabatically change the trapping frequencies of the harmonic potential trap from
21 fo

10
process in the P-V diagram. Note that there is no heat exchange between the atomic gas and the

environment (actually vacuum) and no atoms leave the trap during the process.
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5512{3}\}\(‘)%1 =Wy = Wz = 2mfy g Wy = 21 fy A Wyo = Wz = 211-[({00 AR, HFS
R (Khr EREZE) ZERAHRSH, It Rz R e m =2 -

Wy1 = Wy1 = Wyq = 2Tfy 10 Wyp =27fy and wy; = W, = following the adiabatic

Calculate the final temperature of the atomic gas after adiabatic .
. 2 points
D2 | decompression of the trap. 2 4y

R BRI SR SR R 2R -
PVY = constant and PV = nRT implies T,V ™" = T,/ ", (1 point)
For the monoatomic gas with y = 5/3. From the result of (C2), the volume changes as

V, =100V,

and thus



T 105 .

= 100;_1 = - = 5nK (1 point)

Remark: Some students first substituted the adiabatic relation into the result of part C2 to find the
relation between the volume and the trapping frequencies. They found that V only expands 10
times and the final temperature is 23 nK. This answer has sound physics reasoning and is also
considered correct. On the other hand, the question setter realized that in actual experiments, the
volume does not change that dramatically on cooling due to the repulsive interaction. In
retrospect, the problem might be less ambiguous by directly pointing out that the volume
increases 100 times.

T,

Remark: Using this adiabatic cooling via adiabatic decompression of the trap, researchers at MIT
had achieved the coldest matter in universe around 500 pico-Kelvin in 2003 (research work
reported in Science 301, 1513-1515 (2003)).

Acknowledgement: We thank Prof. Gyu-Boong Jo for contributing this interesting question.



Problem 2: Swimming Microorganisms (33 points) ##¥k Y (33 2

Although objects in water tend to sink in a gravitational field, microorganisms such as
paramecium can control their swimming directions not necessarily subject to gravitational field.
Recently, physicists proposed that their swimming patterns are related to their asymmetric shape.
When they swim in a viscous fluid, they experience asymmetric resistance forces that may cause
them to rotate.
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A. Resistive Forces and Torques in a Viscous Fluid kEME5k Ay HLFE F7F0 7148

For a rod having a translational motion in a viscous fluid, there are two kinds of resistive forces.
In this question, we will refer to the resistive force acting in the normal direction of the rod as the
drag, and the resistive force along the direction of the rod as the friction, as shown in Fig. 1(a).
The drag per unit length is approximated as s, and the friction per unit length as % where
v, and v are the velocity components normal and parallel to the axis of the rod respectively, and
A 1S a constant proportional to the viscosity of the fluid.

TERSETR AR A SRS m i 7, fREMPUE . fEAE S, A TRERTER 7T AR
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Fig. 1: (a) Directions of the resistive forces acting on a rod moving in a viscous fluid with velocity v indicated as the
white arrow. The drag is directed along —v,, and the friction along —v;. (b) The resistive forces acting on an element
of the rod rotating about point P in the same plane at radial distance d, and tangential distance d, from its center.
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As shown in Fig. 1(b), consider a reference point P whose radial and tangential distances from
the center of the rod are d; and d; respectively. If the rod has a fixed position and orientation with
respect to P, and P has a translational motion, then the resistive forces acting on the rod can be
calculated using Fig. 1(a). However, if the rod also rotates in the same plane about P at an

10



angular velocity w, there will be extra forces and torques acting on the rod due to drag and
friction.

wmE 1 (b fon, BEAZEE P, ST ORRRMYIFEEE A d M ode
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Al Derive the friction F due to the rotational motion. 1 point
BT T e sh 5| R K R T Fo 14}

As shown in Fig. 1(c), dF =ﬁ(a)w/(x+dt)2+dr2dx) d. =§,udra)dx

2 Jx+d)? +d?
F = %,uld o) [1]
A2 Derive the drag D due to the rotational motion. 1 point
S T ez sh 51 2RI ) D. 15

As shown in Fig. 1(c), dD = ,u(a)qf(x+d1)2 +dfdx) x+d, = uow (x+d,)dx
Jx+d)? +d?

1/2
D= ,ua)J (x+d)dx = puld o [1]

—-1/2

A3 Derive the torque z about the axis of rotation due to the friction. 1 point
BT B B S e 0 i g 14y

As shown in Fig. 1(c), d =ﬁ( Jx+d)? +dfdx{ d. wo|r =%,ua)dr2dx

2 Jo+d)?+d?
Torque 7, = %yldf(o [1]
Al Derive the torque 7y about the axis of rotation due to the drag. 2 points
Wl B FE S e o0 1 0 o 2453

As shown in Fig. 1(c), dz, = ﬂ(cow/(x+ d)?+ dfdx) x+d, (x+d,) = pw (x+d, ) dx
Jx+d)? +d?
1/2 1/2

1
ty=po [, (x+d)dx = po [} (x*+2dx+d7)dx = Ey|3w+yldfw [1,1]
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B. A Passive Microswimmer with No Rotation TC3l /1 X A eI K Y

An asymmetric microswimmer is L-shaped with the dimensions shown in Fig. 2(a). The mass of
the microswimmer is m and the density is uniform. The lengths of the long and short arms are 4b
and 2b respectively. The width and thickness of its two arms are negligible.
HARWPREIR AR EA LIPAIR, RSB 2 (a) Fos. FEkfEyrIsEES m,
wmEES. KENEEIRE Ay 4bF1 2b. PRI B 1R n] 20K .

Fig. 2: (a) Dimensions of the microswimmer. (b) The weight and the velocity of a passive microswimmer. (c) An
active microswimmer.

2: (a) FEAMAEYIRIRSF. (b)) s Adrk M EYIREEREE. (o) BImikmMEN.

A passive microswimmer does not have any self-propulsion. The center of mass G of the
microswimmer is at a distance h and k from the midlines of the long and short arms respectively.

T IR AR AR E# T FaEMRIEIL G 5 REMFE LY
FEES7 9009 h A Ko

a1 Write the expressions of h and k. 2 points
WE N h 1 kAyFREA. 245
b 4b
h=—,k=—. 1,1
3 3 [1.1]

The L-shaped microswimmer is tilted by an angle ¢ as shown in Fig. 2(b) and is sinking with
velocity v in the direction inclined at an angle & with the vertical in the presence of gravitational
acceleration g. The microswimmer does not rotate. Assume that the upthrust of the fluid is
negligible compared with the weight of the microswimmer.

LI NG 4B 2 (b) B, 3 ELESUTIIRRE g 4980 . bl
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Write the equation consisting of the components of all forces along the y axis
B2 | (the direction of the long arm).

WS My B (KErJTE) BVATE 2 DHREI T -
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Friction on the long arm: F, = u4bv cos(¢ - 09)/2 [0.5]
Drag on the short arm: D, = u2bv cos(¢ - 6) [0.5]
Hence F, + D, = mg cos ¢ = 4ubvcos(¢—6)=mg cosg [1]

Write the equation consisting of the components of all forces along the x axis

B3 | (direction of the short arm). 2 gty;lts
WE MG x i CEENITR) BYFTA 7 JHRRI IR -
Drag on the long arm: D, = u4bv sin( ¢ — 9) [0.5]
Friction on the shortarm: F, = u2bvsin( ¢ - 9)/2 [0.5]
Hence D, + F, = mg sin ¢ = 5ubvsin( ¢ —0) =mg sin ¢ [1]
Write the equation consisting of the moments of all forces about the center of .
B4 | mass. 2 points
RS FHT ELER LA R T - kad
Clockwise moments of the long arm in Fig. 2(b): [0.5]
Drag on the long arm: D, (2b — k) = 8ub’vsin( ¢ — 0)/3
Friction on the long arm: F_(a - h) = 2ub®vcos(¢ — ) /3
Anticlockwise moments of the short arm in Fig. 2(b): [0.5]
Drag on the short arm: D, (b — h) = 4 ub?vcos(¢ — ) /3
Friction on the short arm: F, (2b — k) = 4ub®vsin( ¢ — 0)/3
Hence D, (2b—k)+F,(a—h) = D,(b—h)+F, (2b —k)
= 8ub®vsin( ¢ —0)/3+2ub’vcos(¢—6)/3=4ubvcos(¢p—0)/3+4ubvsin(p—0)/3 [1]
tan( ¢ — 0) = 1
2
Calculate the tilt angle ¢ of the microswimmer at the steady state. Give your 1 poi
) point
B5 | answer in degrees. 14
T KU E MRS TR A ¢ . BFRUEHERL.
From B2 and B3,
mg cos ¢ = 4 ubv cos( ¢ — )
mg sin ¢ = 5ubv cos(¢ — @)
- 5 5)(1) 5 5
Dividing, t ==t -0)=|—||=|== = ¢ =arctan —=0.56rad = 32° 1
S 0 ) = () =) [4][2] S0 A [1]
B6 Calculate the motion direction & of the microswimmer at the steady state. 1 point

Give your answer in degrees.
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BB E VRSN I3 T 17 0« B RUEEERIA.

tan ¢ —tan( ¢ — 6) 5/8-1/2 2 2 Q
= =— = @ =arctan — = 0.095 rad = 5.4 [1]
l+tan gtan(p—60) 1+ (5/8)(1/2) 21 21

tan @ =

C. An Active Microswimmer with Rotation B3 /1 X &gk agizikisEY

To model an active microswimmer, physicists implemented a laser-induced chemical reaction at
a point on the shorter arm of the object so that it provides a self-propulsion force F normal to the
short arm. The dynamical properties of the microswimmer are rather sensitive to the point of
application of F. For convenience we consider the case that this point is located at a distance

lp = gb from the corner (see Fig. 2(c)). The force can be adjusted by tuning the laser intensity

incident on the microswimmer. Note that it is possible that the microswimmer can rotate so that
forces and torques due to rotation have to be included. The velocity v, direction @ and the tilt

angle ¢ becomes time dependent, and you will need to include the angular velocity 4 as one of
the variables.

R T EIN BB I R A, VI RN B — SO el BSOS SR BT
RE, NEfREEEE TRENE MRS Fo FERMAEYIRIEN RS T F AR SR Y
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JA IR AR Y) FATSesRAE, FTULRETTHERE Sy EE, BOvRR A o] DUERs
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Write the equation consisting of the components of all forces along the y axis
C1 | (the direction of the long arm).

WG Ty B (KSR GFE S AR, ad

2 points

Friction on the long arm due to translation: F_ = 2 ubv cos(¢ — )

Drag on the short arm due to translation: D, = 2 ubv cos( ¢ — 6)
Friction on the long arm due to rotation: F_ = u4bh¢/2 = 2ub%$ /3
Drag on the short arm due to rotation: D, = —u2b(b—h)g = —4ub’4 /3

2 .
Hence F, +F_, +D, + D, + F =mg cos ¢ = F +4ubv cos(¢—9)—gyb2¢ = mg CcosS ¢

[1 for terms dependent on ¢ , 1 for the equation]

Write the equation consisting of the components of all forces along the x axis
C2 | (the direction of the short arm).

SRS x B (R ) (IR A AR . 25

2 points

Drag on the long arm due to translation: D, = 4 ubv sin( ¢ — 0)
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Friction on the short arm due to translation: F, = wubv sin( ¢ - 9)
Drag on the long arm due to rotation: D, = u4b(2b - k)¢ = 8ub’4 /3
Friction on the short arm due to rotation: F, = —u2bk¢/2 = —4ub’$ /3

4 .
Hence D, + D, + F, + F, =mg sin ¢ = 5ubv sin(¢—¢9)+§,ub2¢ = mg sin ¢

[1 for terms dependent on ¢ , 1 for the equation]

Write the equation consisting of the moments of all forces about the center of
C3 | mass.

WE T ArA RS LAY IR ST R T2 -

4 points
44y

Clockwise moments of the long arm in Fig. 2(c):
Drag on the long arm due to translation: D, (2b — k) = 8ub?vsin( ¢ — ) /3

Friction on the long arm due to translation: F_(a —h) = 2ub®vcos(¢ —6)/3
Drag on the long arm due to rotation: 64 ub®4/12 + D (2b — k) = 64 ub°$ /9 [0.5]

Friction on the long arm due to rotation: F_h = 2ub’4/9 [0.5]
Anticlockwise moments of the short arm in Fig. 2(c):
Drag on the short arm due to translation: D, (b - h) = 4 ub*vcos(¢ - 8)/3

Friction on the short arm due to translation: F k = 4 ub®vsin( ¢ — 6)/3

Drag on the short arm due to rotation: —8ub®/12 + D, (b —h) = —14 ub°4 /9 [0.5]
Friction on the short arm due to rotation: — F, k = —16 ub°4 /9 [0.5]
Self-propulsion force: F(13b/24 —h) =5Fb /24 [1]

8ub®vsin( ¢ —0)/3+2ub’vcos(g—60)/3+64ub’p/9+2ub’h19
= 4ub®vcos(¢—0)/3+4ub’vsin( ¢ —0)/3-14 ub’$ /9 —16 ub’p /9 +5Fb / 24
32

] 5 2
—ub’p=—F +=pub —~0)-2sin(¢ -6 1
S M= +3uvkmw ) - 2sin( ¢ - 0)] [1]

The above three equations can be solved for the three variables vcos(¢ - ), vsin( 4 —-6) and 4 .

At =R AT LA veos(g - 0) « vsin( ¢ - 0) Bl g = PATEKfF

Eliminate vcos(¢ — @) and vsin( ¢ — ) from the above equations to obtain an
equation involving gand 4 only.

M E R 2 v eos( ¢ — 0) Filvsin( ¢ — 0) » DISKE— A K ¢ il ¢
HAZ -

C4

2 points
24y

From C1 to C3,

5 ubv sin( ¢ — 8) = mg sin ¢—§ybz¢5 (1)
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2 .
4 ubv cos(¢ — 6) = mg cos¢+§,ub ¢—F (2)

32 5 2
—ub’¢ = —F b 0)-2 0 3
5 b9 = - F + —pubv[cos(g - )~ 2sin( ¢ - 9)] 3)
Substituting (1) and (2) into (3),
153 b’ = LF —ﬂ(min ¢ —5c0s ¢)
5T w0
: 1 [5F ] 1 ] 5
¢ = 306 b° L__ mg (8sin ¢ — 5cos ¢)J 306 b L \/_mg sin( ¢ — ¢O)there sin ¢, = @
[1 point for steps, 1 point for the result]
Derive the tilt angle ¢ when the microswimmer reaches the steady state of 2 Do
. points
C5 | constant tilt. 2 45
AR S T U A 2E D AE [ 5 RS S T IR o .
1 [5F

\/_mg sin( ¢ — ¢0)} =0 = ¢ = arcsin \/5_+arc5|n 4\/_mg

306 ub? | 4

Consider a microswimmer initially at the steady state with F = 0. Att =0 the

6 laser is switched on so that F becomes nonzero. Calculate #(t) for F << mg. 2 points
ZREWF KA FIWIIEIRAS A F = 0 (IFas. fEt=0/, #eRT, 25

13 F A RNAEE. 78 F<<mg ST, RiHEd0).

dg 1 7 /8Img 5F
e _ /89 e 1
dt 306 b L i = ¢°)J 306 bz[ 4/89 mg J s
. 5F [ /89 V89mg
Solution: ¢ = —|1- 1
SRS ¢ ¢°+4\/§mg|L ep[ 306 ub’ L' 1]

When F gradually increases from 0, the direction of linear motion gradually changes. When F
exceeds a critical value, the tilt angle is no longer constant and the microswimmer takes a wheel-
like trajectory.

= I N VIR 1 7 o G S 7/ 2 e ooy [ R T T G = = <= b ol R R E LN P (1P
FAANTRIEE, WK A L3S IR .

c7 Write the maximum value of F for linear motion. 1 point
5T &MEEs &K FIE. 14
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The equation mg . Hence

{5—— 9mg sin( ¢ — ¢O)} = 0 has no solution when F > il

the answer is F = —— 5

[1]

To verify that the microswimmer can move in a wide range of directions,
calculate the force(s) required for linear motion in the horizontal direction 8=
2. Give your answer in multiples of mg to 3 significant figures. 3 points
C8 | 7 S E K A AR S 12 S R Y T RS, SR B | 34
TEKFIT 10 0 = w2 (ELVEis sy, Frai i G8) T2 2. B R mg 1
BHERIE, & 3IMHERET.

. 4
FromC4, 4=0 = F :Emg (8sin ¢ —5cos ¢)

From C1 and C2,

5ubvsin( ¢ — @) = mg sin ¢ 1
4 ubv cos(¢ —6) =mg cos ¢ — F [1]
Dividing, tan( ¢ - ¢) = ——9SNé _____ 4sing
5(mg cos g — F) 25cos ¢ —32sin ¢
WhenH:Z,tan(¢—9):—cot¢:—cos¢:>—COS¢: 4sin ¢
2 sin ¢ sing 25cos ¢ —32sin ¢
25 c0s° ¢ —32sin ¢cos ¢ +4sin’g=0 [1]

. 9 1 1 g 1 1 . 1
Since cos“ ¢ = —+ —cos 2¢ , sin "¢ = —— —cos 2¢ , sin #cos ¢ = —sin 24 ,
2 2 2 2 2

32sin 2¢ — 21 cos 2¢ = 29

21
V1465 sin( 24 — 2¢,) = 29 where sin 2¢, = ﬁ
1465

4
) 0.7202 = F = Emg (8sin ¢ —5co0s ¢) =1.21mg

- 5 aren 2 2
arcsin + arcsin ———
1465 1465 )

4
== )=1.4313 = F =—mg (8sin ¢ —5cos ¢) =5.78mg
5

= (71' — arcsin —+ arcsin ——
2\ /1465 /1465 )

[1 for either result]
The background material of this problem can be found in the article: B. ten Hagen, F. Kimmel,

R. Wittkowski, D. Takagi, H. Lowen, and C. Bechinger, “Gravitaxis of asymmetric self-
propelled colloidal particles”, Nature Communications 5, 4829 (2014).
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