答案上載

http://panpearl.phys.ust.hk

卷一

- 1. 立竿无影: 2.4 / 5
- 2. 六枚飞弹: 4.2 / 5
- 3. 下跌中的梯子: 7.2 / 10
- 4. 光子气体: 2.4 / 5
- 5. 海面传音: 2.4/5
- 6. 空腔中的电子轨迹: 4.9 /10
- 7. 带电荷电流线邻近的质子运动: 3.3 / 5

总分: 26.8 / 45 (去年: 25.3 / 50)

卷二

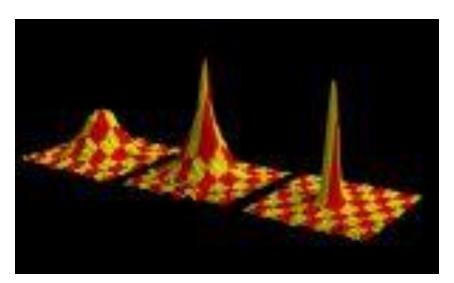
1.玻色-爱因斯坦凝聚: 11.4 / 22

2. 游泳微生物: 10.6 / 33

总分: 21.8 / 55 (去年: 18.5 / 50)

卷一和卷二

• 总分: 48.6 / 100 (去年: 43.8 / 100)


•

• 中位数: 51 (去年: 46.5)

The Prize

"for the achievement of Bose-Einstein condensation (玻色-愛因斯坦凝聚態) in dilute gases of alkali atoms (碱原子) , and for early fundamental studies of the properties of the condensates"

The Winners

Eric A. Cornell

康奈爾

JILA & NIST, Boulder, Colorado.

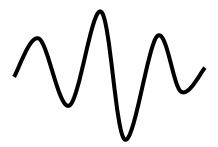
1961-

Wolfgang Ketterle

克特勒

MIT

1957-


Carl E. Wieman

維曼

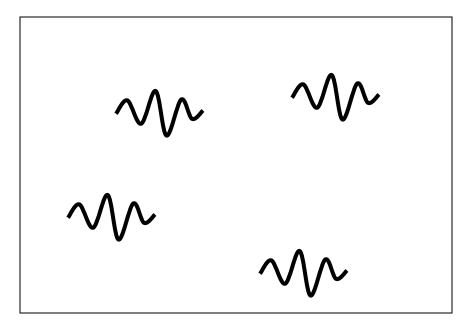
JILA & University of Colorado, Boulder.

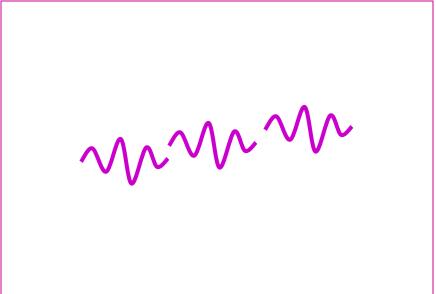
1951-

Q1: What Is Bose-Einstein Condensation?

De Broglie 德布羅意 (1929 Nobel Prize winner) proposed that all matter is composed of waves. Their wavelengths are given by

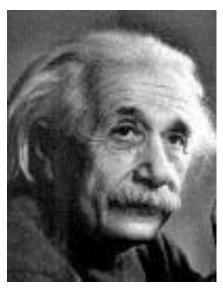
$$\lambda = \frac{h}{mv}$$

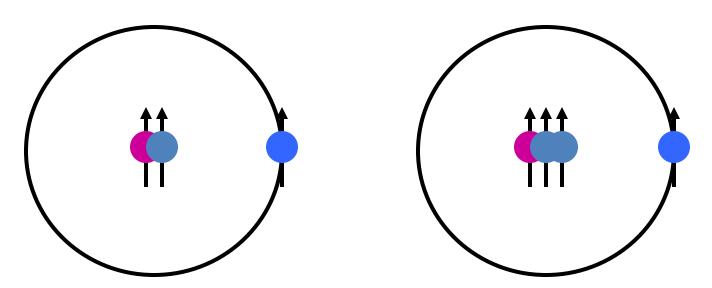

 λ = de Broglie wavelength

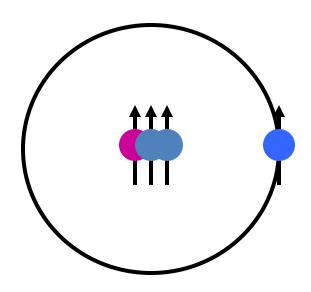

h = Planck's constant 普朗克常數

m = mass

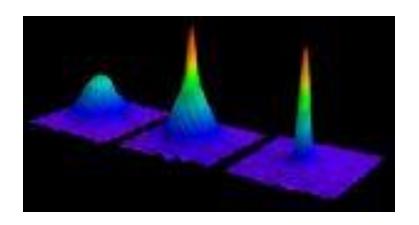
v = velocity

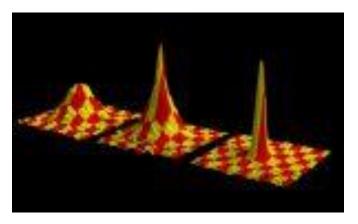

Against Our Intuition?!


Bose and Einstein

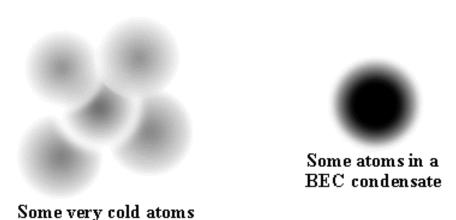

- In 1924 an Indian physicist named Bose studied the quantum behaviour of a collection of photons.
- Bose sent his work to Einstein, who realized that it was important.
- Einstein generalized the idea to atoms, considering them as quantum particles with mass.
- Einstein found that when the temperature is high, they behave like ordinary gases.
- However, when the temperature is very low, they will gather together at the lowest quantum state. This is called <u>Bose-Einstein condensation</u>.

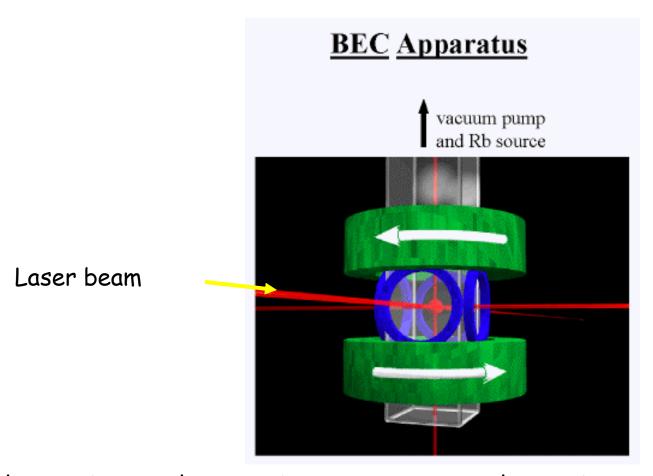
Fermions (費米子) and Bosons (玻色子)


- * Not all particles can have BEC. This is related to the spin of the particles.
- * The spin quantum number of a particle can be an integer or a half-integer.
- * Single protons, neutrons and electrons have a spin of $\frac{1}{2}$. They are called <u>fermions</u>. They cannot appear in the same quantum state. BEC cannot take place.
- * Some atoms contain an even number of fermions. They have a total spin of whole number. They are called <u>bosons</u>.
- * Bosons show strong "social" behaviour, and can have BEC.
- * Example: A 23Na atom has 11 protons, 12 neutrons and 11 electrons.

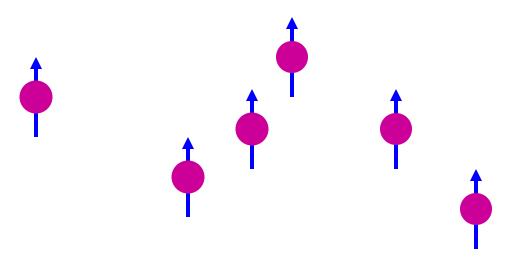

The Material For BEC

- * BEC was found in alkali metals e.g. ⁸⁷Rb (金如), ²³Na (鈉), ⁷Li (鋰) because:
 - *They are bosons.
 - *Each atom is a small magnetic compass, so that a cooling technique called magnetic cooling can work.
 - *The atoms have a small repulsion, so that they do not liquefy or solidify down to a very low temperature.


Cooling Down the Atoms


- ★ See the animation: http://www.colorado.edu/physics/2000/bec/what_is_it.html
- * When the temperature is high, the atoms have high energies on average. The energy levels are almost continuous. It is sufficient to describe the system by classical physics.
- * When the temperature is low, the atoms have low energies on average. It is necessary to describe the system by quantum physics.
- * When the temperature is very low, a large fraction of atoms suddenly crash into the lowest energy state. This is called Bose-Einstein condensation.

The Strange State of BEC

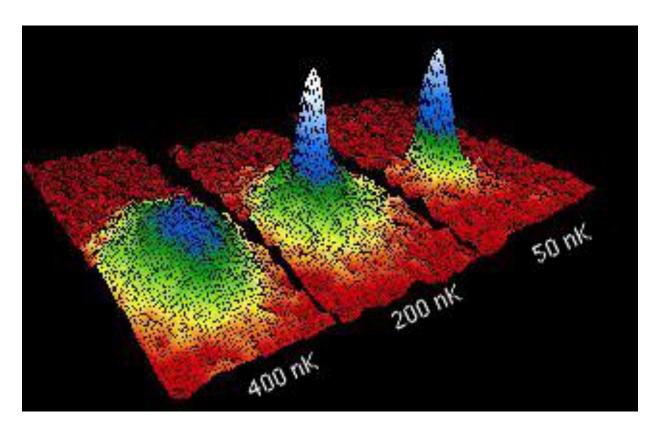

- * When all the atoms stay in the condensate, all the atoms are absolutely identical. There is no possible measurement that can tell them apart.
- * Before condensation, the atoms look like fuzzy balls.
- * After consdensation, the atoms lie exactly on top of each other (a superatom).

Q2: How Is BEC Made?

Other equipment: laser equipment, computer, electronics Cost less than US\$100,000

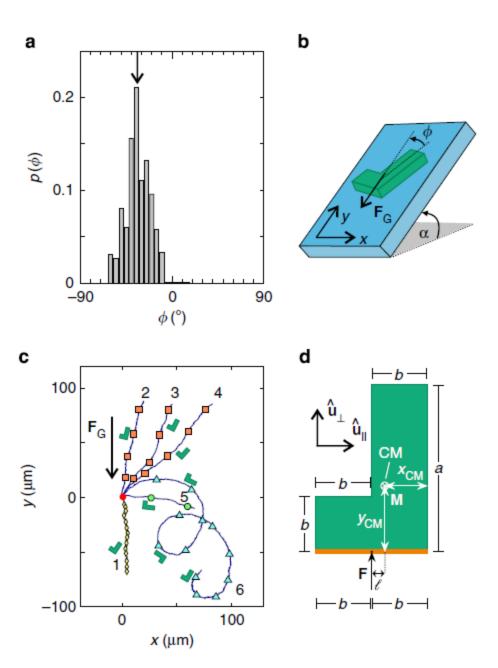
Magnetic Trapping (磁性陷阱)

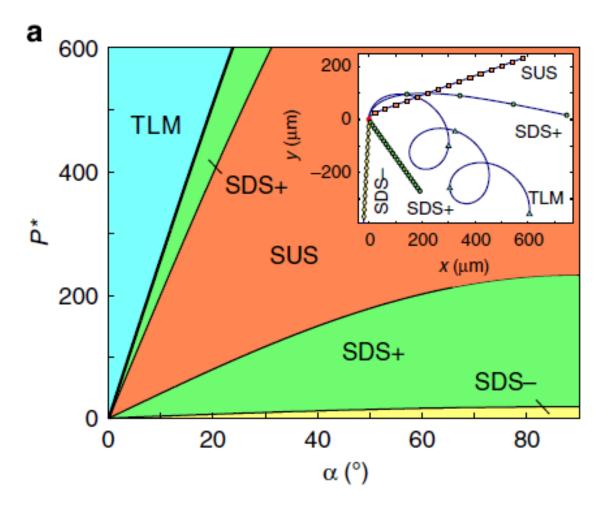
- * Problem: Laser cooling can cool the atoms down to $10\mu K$, because atoms can spontaneously emit the absorbed photon. This is still too hot for BEC.
- * Solution: Evaporative cooling
- * The atoms behave as tiny compasses. They can be pulled by magnetic fields.
- * A magnetic field can be designed to push the atoms inwards from both sides, forming a magnetic trap.


Evaporative Cooling (揮發冷卻)

- * Principle: Evaporation takes heat. A cup of tea gets cool after steam escapes, because faster atoms escape from the cup, leaving behind the slower ones.
- * Technique: Lower the height of the trap quickly, so that there are still enough atoms left in the trap to get involved in BEC.
- * Try to trap the largest number of atoms in BEC in the animation:
- http://www.colorado.edu/physics/2000/bec/evap_cool.html

Q3: What Does a Bose-Einstein Condensate Look Like?

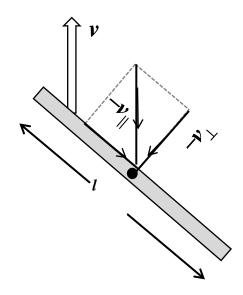

- * There is a drop of condensate at the centre.
- * The condensate is surrounded by uncondensed gas atoms.
- * The combination looks like a cherry with a pit.
- ★ See the movie when it cools from 400 nK to 50 nK (1 nK納開= 10⁻⁹K).: http://www.colorado.edu/physics/2000/bec/what_it_looks_like.html



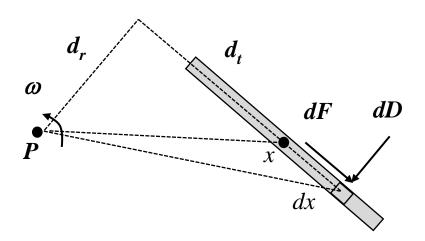
2.游泳微生物: 33分, 平均10.6分

诸如草履虫的微生物怎样按着重力场的影响,控制游泳的方向?

最近,物理学家提出他们的游泳模式和他 们**不对称**的形状有关。


TLM = trochoid-like motion

SUS = straight upward swimming


SDS+ = straight downward swimming with a positive drift

SDS- = straight downward swimming with a negative drift

(a)

(b)

$$D = \mu v_{\perp} l$$

$$F = \frac{1}{2} \mu v_{\parallel} l$$

$$D = \mu l d_t \omega \qquad F = \frac{1}{2} \mu l d_r \omega$$

$$\tau_f = \frac{1}{2} \mu l d_r^2 \omega$$

$$\tau_d = \frac{1}{12} \mu l^3 \omega + \mu l d_t^2 \omega$$