Problem 1: Spatiotemporal varying electric permittivity (30 points)

[B128 1: B ENEEE (30 2)

In electromagnetism, dielectric media, e.g. a block of glass, is represented by a permittivity
different from the one of vacuum. The reflection and refraction for electromagnetic waves
on a slab of dielectric material can be derived from considering dispersion relationship and
matching boundary condition.
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In the question, we would like to investigate the Fabry-Pérot resonance from a slab of
dielectric medium in the first step and the analog concept when the permittivity of the
material becomes inhomogeneous in the time domain instead of the spatial domain.

FEBCA T, BRSBTS R AT BB SEIREL G, LB BRI 1
BRI BTS2 TS A8 ST A B

Figure 1 shows the schematic diagrams for light entering a block of dielectric medium at
normal incidence. The left diagram shows the case for a block of infinite thickness, in which
the light only undergoes one instance of reflection and refraction at the interface. The right
diagram shows the case for a finite thickness, in which the light ray undergoes multiple
reflections within the slab. The spatial and temporal axes are the horizontal and vertical ones
respectively.
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Fig. 1: (Left) Schematic diagram for a light ray entering an interface between vacuum and dielectric medium
(Right) Schematic diagram for a light ray entering a slab of dielectric medium undergoing multiple reflections.
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A. Fabry-Pérot resonance (13 points)

To obtain the amount of light being reflected and refracted from a block of dielectric medium,
we start from the Maxwell’s equations:
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where the curl and div operators are defined by
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The constitutive relationship for the dielectric material or vacuum in relating the different field
variables are expressed as
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D =e(x)E
B = ‘lloH

In this part, the electric permittivity profile e(x) only varies in x but not in y, z and t. All the
materials are non-magnetic, having the same value of magnetic permeability u, of vacuum. We only
consider electromagnetic waves which propagate in the x-direction.

TEARE S, AHEEHMLE e(x) (EH x 2k, M5y 2z M ¢ XK. Fra MR
FEARRETER), BAMAERNESW SRRyl HANVRABREAE x T AL B .

Al We consider an electromagnetic wave propagating only in the x- 2 Points
direction specified by E = $E,(x,t), H = 2H,(x,t) . Reduce the 245
Maxwell’s equations to two differential equations only on E,, and H,. Each
differential equation is first order in both temporal dimension t and spatial
dimension x.
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Answer:
axEy = —0¢B; = —io0H,
axHZ - _atDy - _E(x)atEy



A2 For a sinusoidal wave propagating in the positive x-direction in a medium 2 Points
of constant permittivity €; (e.g. in a glass), it has a form E, = 2 4
E;,, cos(kyx — wt). Find the dispersion relationship between k; and w
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Answer:

Let also H, = H;,, cos(k,;x — wt), we have
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Now, we consider an interface between vacuum and a dielectric medium (see left panel of Fig.
1). Afixed incident electromagnetic wave E, = Ej;, cos(ky,x — wt) propagates in vacuum to the
right hand side before entering the dielectric medium. The permittivity €(x) in this case is a step
function, being €, for x < 0 and ¢; for x > 0.
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A3 Suppose the transmitted waves is represented by E, = 5 Points
E; cos(kix — wt + ¢;). Find E; and ¢, in terms of E;,;, w and the 5%
permittivities €g, €;
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Answer:

Let also the reflected wave as Ey, = E,. cos(kox — wt + ¢,), k; = w /1o€; , ;i = 1/,uo/\/.s_i.
Forx <0,
E, = Ej, cos(kox — wt) + E; cos(—kox — wt + ¢;)

_ Ein Er
H, = n—cos(kox — wt) ——cos(—kyx — wt + ¢,)

0 Mo
Forx = 0,
E, = E, cos(k;x — wt + ¢¢)
E
H, = n—tcos(—klx — wt + ¢¢)
1

On the boundary, the continuous variables are E,, and H,

E;, cos(wt) + E, cos(wt — ¢,.) = E; cos(wt — ¢;)
Ein Er _ Et
— cos(wt) — n—cos(a)t —¢,) = n—cos(a)t — ¢¢)

No 0 1
Expand into cos(wt) and sin(wt), we obtain the following equations:

Ein + E, cos ¢, = E; cos ¢,

(Ein — Ey cos ¢r)/770 = E;cos ¢, /m
E, sin ¢, = E; sin ¢,

—E; sing, /no = E¢sing, /mq

Therefore,
2m
Er = in
k7
1~ Mo
E, = E;
Tomtn "
¢r=¢: =0

We can also define transmission and reflection coefficients £ and 7~ by
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Now, we consider a plate of dielectric medium with a finite thickness ¢, with a fixed
electromagnetic wave shining normally to the plate. There will be multiple reflections and
transmissions between the two interfaces of the dielectric medium (see right panel of Fig. 1).
The incident wave is still fixed as E,, = Ej;, cos(kox — wt) while the total transmitted waves

after the whole slab of dielectric medium is now specified by E,, = Et(mt) cos(kox —wt +

t(mt)), by summing all the multiple reflections and transmissions.
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E, = Ej, cos(kox — wt) ,
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A4 Derive the maximum value for |Et(t°t) | when we can choose an 4 Peints
optimal value of £ . Derive the condition for such #. 49)
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Answer:

From last part, it is actually more convenient to use complex number notation, e.g.

E, cos ¢, + iE, sin ¢, — e,

Then
e L
et
o 771 No '
Tmtne
From vacuum to dielectric medium:
_2m N1 = No
S, =
No + 11 N1+ 7o
From dielectric medium to vacuum:
t' = 2109 7' = fo 771 =
Mo + 1M1 m+n

Total transmission (summing the multiple scattering processes in right panel of Fig. 1) is

tror = tefrlt’ + tetkily’ ptkrlyr gikaby’ 4 ...

tt' etk
= 1 — p'2p2ike?
Therefore, the maximum value of |Et(t°t) is
4014 1 _ Anony _
(o +m)? 4 _ (770 m) Amemy
M1+ Mo
The condition is
ki =mn

for an arbitrary integer m.

B. Time-varying permittivity (14 points)




We have considered a boundary of the permittivity profile in the spatial domain x. Now we go to
the complementary problem. Suppose the electric permittivity is constant in all spatial
dimensions but varies in temporal dimension t. For example, materials like LINbO5 will have its
permittivity changes when a DC voltage is applied across the material through the Kerr electro-
optic effect.
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Fig. 2: (Left) Schematic diagram for a light ray entering a time-boundary in which the permittivity changes from
€, to €, (Right) Schematic diagram for a light ray going through two time-boundaries. The permittivity changes
from €; to €, at t = 0 and changes backtoe; att =T.
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In a similar fashion, left panel of Fig. 2 shows the trajectory for a light ray originally propagating
in a homogeneous medium in the positive direction. Then, the permittivity suddenly changes
from €; to another value €, at t = 0. In the right panel, we now have a “slab” of such time-
varying material in the time domain. The permittivity changes back to €; att = T. The blue
arrows show the light rays. At every boundary, the ray splits in a forward and backward



propagating ray. As the initial ray is propagating to the right, we call the left propagating wave as
“reflection/backward propagating” and the right propagating wave as “transmission/forward
propagating” after a time boundary. Note that the rays can only to in the positive time direction.
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To be specific, consider an electromagnetic waves propagates in an infinite block of dielectric
medium originally. Suddenly, at time equal to zero, the dielectric constant in the whole space
changes from €; to €,. We call t = 0 as a temporal boundary. See left panel of Fig. 2.
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B1 What are the continuity conditions in this case across the time boundary? 3 Points

34
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Answer:

From the Maxwell’s equations,

0xE, = —0,B,

0xH, = —0d,D,
under the similar principle to consider a spatial boundary, a temporal boundary requires continuity
of D, and B,.



Initially, the electromagnetic waves is specified by E = yE; cos(k,x — wt), a forward propagating waves

in the positive x direction. After the permittivity has changed, there is a backward propagating waves (along
the negative x direction) and forward propagating waves (along the positive x direction). They are the defined as the
temporal reflection and temporal transmission waves.
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B2 The radial frequency has changed from w to another value w’ across the time- | 3 Points
boundary. Express o’ in terms of w and the permittivity values. 39
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Answer:
Fort <0,
E, = E; cos(k;x — wt)
E,
H, = —cos(kix — wt)
m
Fort = 0,

E, = E, cos(kyx — w't — ¢,) + E¢ cos(kpx — 't + )
E E
H, = ——cos(k,x — w't — ¢,) + —tcos(kzx —w't+ ¢p)
12 N2
where k, = w'\/Uo€s.

Continuity gives
€1E; cos(kyx) = €;E, cos(kyx — ¢,) + €,E; cos(ky,x + ¢y)
E E E
—1cos(k1x) = ——Lcos(k,x — ¢,) + —tcos(kzx + ;)
M N2 12

The condition can only be satisfied by setting k, = k. This is in analogy to the spatial case that w is
conserved across a spatial boundary. For a time-boundary. k is conserved.

Therefore

W = [GolE

From now on, ljust call k = k; = k, = w+/ o€,



B3 Express the amplitude of the backward propagating wave and the forward 3 Points
propagating wave. 349
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Answer:
From last part, the continuity is derived as

Continuity gives
€1E; cos(kx) = €,E, cos(kx — ¢,.) + €,E; cos(kx + ¢;)

Ey E, Ey
—cos(kx) = ——cos(kx — ¢,.) + —cos(kx + ¢;)
U M2 M2

We therefore have ¢, = ¢, = 0 and
€1E1 = EZET + EZEt

E, E, E
n N2 N2
So, we have
1 /€ 1/€ €
Er=—<—1—n—2>E —<—1—£>E1
2\€; m 2\e; e
1 /€ 1/€ €
Et=—<—1+n—2>E1=—<—1+£>E1
2\€; m 2\e; e

Suppose the whole medium goes back to a dielectric medium of permittivity of €; after time t =
T (see right hand side of Fig. 2).
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B4 Find out the amplitude of the backward and forward propagating waves 5 Points
finally. What is the condition to get minimal reflection? 5 4
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Answer:
We use a tuple to represent the backward and forward propagating waves and use complex
guantities. The different processes (see right hand side of Fig. 2) can be written as the following step

by step.

Att=0

01) - (% @t

Att = T, the two waves propagate and become

(-T2t
2\e, 1M "2

Att =T, we have two processes:

€2 1
01) > ( (61 -

N1
G = ( (G

As the system is linear, the final waves become

(1(&_’7_2) —io'T ( n2>eiw’T>
2\e; m €2 M

"2
_,1(6_1_’7_2>e—tw'r 3(6_2_'7_1> l( +’71>
2\e; m 2\e; 1M 2\ N2
(T rr (L, ) Lee_my
2\e; m 2\€; 1M 2\ N2

i € € €
= (E sin(w'T) (— L + an) cos(w'T) + —sm(a) T)( L + 2772>>

€212 €171 €212 €11
Y e I vea Ve
= (2 sin(w'T) < NG + \/_> cos(w'T) + sm(a) T) <\/_ \/_>>

The condition to get minimal reflection is w'T = mm.

C. Spatiotemporal permittivity (5 points)



In the final part, we consider the case that the permittivity has to be written as a function in both
xandt,i.e. e(x,t). For a simple case, the permittivity function consists of two constants: ¢, in
the white region and €, in the gray region, a so-called spatiotemporal boundary depicted in Fig.
3. The spatiotemporal boundary is defined by a straight line x = —ut
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Fig. 3: A spatiotemporal boundary. In the gray (white) region, the permittivity is €; (€,)
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Ci1 What are the continuity conditions in this case across the spatiotemporal 3 Points
boundary? Hint: You may need to consider a coordinate transformation. 340
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Answer:

We change the coordinate from (x, t) to (q, 7)

q=q(x,1t)
T=x+ut

As e(x,t) = €(t), we would like to observe how the Maxwell’s equations connect field quantities at
different .

dq

ax =S aaq + c')T
dq

at = aaq +uGT

From the Maxwell’s equations,
0xEy, + 9B, =0
0xH, +9:D, =0
we have

o
L (84Ey +04B;) + 0,(Ey +uB,) = 0

0
1 (8H; + 04Dy) + 0,(H, +uD,) = 0

The continuity variables are
Ey, +uB,
H, +uD,,
being continuous across the boundary

A more specific way:

Define u = ¢; cot 8 so that the boundary is described by
c1cosf t+sing x =0

We change coordinate from (x, t) to fictitious (x',t") by

() = Gne os0)(crd)

) 0.1
1 x _ ( cosf sin 9) *
—0; —sin@ cosB/\ —0d,
1 1



From the Maxwell’s equations,
0xEy, + 9B, =0
0xH, +9:D, =0

1 1
cos 6 d,/E, + sin BC—E)trEy +c (— sinf d,/B, + cos ec—at,BZ) =0
1 1

1 1
cos @ d,/H, + sin ec—at,Hz +c (— sin6 d,/D,, + cos6 C—at,Dy) =0
1 1

1
6xr(cos 0 E, — sin 6 clBZ) + 0, (sinGC—Ey + cos 8 BZ> =0
1

1
6xr(cos 0 H, —sin6 chy) + 0, (sin 0 C—Hz + cos @ Dy> =0
1

Since € is a function of t" and independent of x/,

The continuity variables are

1
sinf —E,, + cos 6 B,
€1

sinHlHZ + cos6 D,
€1
or equivalently
Ey, +uB,
H, +uD,,
being continuous across the boundary



Problem 2: Fractal Dimensions of Networks (30 points)
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Aline is one-dimensional, a plane is two-dimensional, and the volume of a ball is three-dimensional. Is the
dimension of an object always an integer? What's the dimension of a coastline? What’s the dimension of the
Internet or social network? The dimension of complicated objects is an interdisciplinary study between physics and
many other sciences. Here, we will use “box counting dimension” to discuss the dimension of fractal and complex
network objects.
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Based on this, we discuss the “renormalization group” of a complex network. Renormalization group describes
how physics theories vary as a function of scales, and thus is “theory of theory”. Renormalization group is first
discovered in the quantum field theory of high energy particle physics and condensed matter physics. Here,

complex networks made by vertices and edges, is probably the simplest example to introduce renormalization

group.
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PART A. FRACTALS AND BOX COUNTING DIMENSIONS it & 4 %

We cover an image using squares with side length no more than s. Let B(s) be the least number of squares to
cover the whole image. Then the box counting dimension djy is

BNADKABE s MEATRRBZENEF. R B() 2UMNBSENETMALEARARDHE . Wit
B4 ds A
log B(s)

dg =lim——— .
B sl—r>rollog(1/s)

In this problem we assume the following limit exists. For example, the Sierpinski carpet is the infinite-time iteration
of the following figure (in the following figure we only displayed the first two iterations). Through infinite iteration,
self-similar patterns emerge in the following figure. Such complex objects is known as fractals. In each iteration, in
the nine squares, the center one is removed. What’s the box counting dimension of the Sierpinski carpet?

FEH, BAMREUERREFEN. 0, HREFEXRI TENLEFTER (TERZERT AR
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Here, after each iteration, we can use squares to cover the image, with side length s which is equal to the side

length of the dark box. Let the length of the whole Sierpinski carpet be L. Then B (s = é) =8,B (s = %) =

64,---,B (s = i) = 8™. Note that here the limit s — 0 is equivalent to the limit n — oo. Thus, the box counting

317.
dimension of the Sierpinski carpet is
XE, #RERE, BMNTMALK s FTRETRNEHERBZER. RREMIRENERLNK
AL WB(s=%)=8B(s=7)=64-,B(s =) =8" 5IBH s - 0 (IRMRHE n - oo WIRR, B
BURRETEBNITEAECs

d, = lim log B(s) I log(8")  log8
<Blog(1/s) nowlog(3"/L) log3’

(Note that in the sense of taking limits, whichever unit we use, log L is negligible compared to log 3™ in the above
equation.)

CERE], EBURRMEXT, TWBHABNM, EXH logL 7l log3™ #ALLER ] UIZRE. )
Al. (2P) BOX COUNTING DIMENSION OF A RANDOMIZED SIERPINSKI CARPET FE# {5 /R 52 8y B B
MITE4HE

The randomized Sierpinski carpet is the infinite-time iteration of the following figure (in the following figure we
only displayed the first two iterations). In each iteration, a random square among the nine is removed. Calculate
the box counting dimension of the randomized Sierpinski carpet.

RS R EAERE TENESER (TRRRERTERNEIRR) . SXERF, ADNESTHEN
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Solution: log 8/ log 3 (= 1.893, either the precise or approximate numerical number is fine). There is no difference
between the above example (the position of the squire does not enter the calculation).

A2. (2P) BOX COUNTING DIMENSION OF A HILBERT CURVE 5 /R1A45 i 2k AT & 4 41

The Hilbert curve is the infinite-time iteration of the following figure (in the following figure we only displayed the
first three iterations). Calculate the box counting dimension of the Hilbert curve.

R AFHEE TERNESFER (TRPRAERTERNII=X) . KERBEHHMZEHNITEAE.

Solution: 2.

Because the Hilbert curve is space-filling. It passes through any given point. (This may not be easy to prove, but it’s
straightforward to see that for any given point, the curve will pass by close enough to this point.) Thus, no matter
how small s is, we always need to put boxes all over space to cover the whole curve.



A3. (3P) BOX COUNTING DIMENSION OF THE CANTOR SET FRIEREMNITEH I

The below is one form of Cantor set, defined as the infinite-time iteration of the following figure (in the following
figure we only displayed the first two iterations)

—MEXNREREE TENLESFER (TRAPRABFRTERNIT=X) . KEFRRENITELH.
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o0 00
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Solution: B (s ) 4™ (1p). Thus dg = loﬁ =~ 1.262 (2p)

PART B. INTERSECTION BETWEEN A SPIRAL AND THE POSITIVE X-AXIS 8}k 5 IF x #1935

70N

Consider a spiral in the polar coordinate. Consider all the intersections between this spiral and the positive x-axis
(i.e., the ray 8 = 0 starting from the origin). We will call them “intersections” for short. What’s the box counting
dimension of these intersections? We will solve this problem step-by-step in this part. (Note: in the calculation, we
will allow 8 — +oo. In the below figure, we have not shown the large 8 behavior.)

FRRLIR THBIEZ 1(0) = 077 (a > 0), FRIZBIRES x HMIETTE BIMNRERREER O =05%) 1
FrEZm (K& BH, EHREA TR )  XEXLKNITELEBE LD 7 BRI NERFRX
M. OF  AUHEFRBIVERF O - +o, TEFRFIFZAETH 0 BIRAENITH. )

B1. (1P) THE VALUE OF O OF THE INTERSECTIONS & = /Y 8 18



We denote the 6 value of all the intersections by 8 = A j, where A is a constant, j is non-negative consecutive
integers. Calculate A and calculate the range of j.

FRERRE0 ETRUCIEO =), HPAAER, j ATESRENIFRELR. KANE MNEjHOBRESE
Bl

Solution: j = 1,2,:-- (i.e.j # 0), A=2m, 6 =2mj.

B2. (1P) THE HORIZONTAL AXIS OF THE INTERSECTIONS 3% = A 48 24 #R
Calculate the horizontal axis x; of the intersection labelled by j, as a function of j and a.
KRS j B9t R x;, Fj Fa /o

Solution: x; = rcos @ =1 = (2mj)~%.

B3. (3P) THE DISTANCE BETWEEN NEIGHBOR INTERSECTIONS #H4B3Z &= 19 [8] BB

Given a very small length s. Suppose J is the smallest number which satisfying the following condition.
B/E—NEBHNNKE s, B BENTHFENRNOERT
xj — xj4q < s forall GFFFrE) j =]
Calculate J, in terms of @ and s.
KJMME, AaflsFzr.
Solution:
Since s is sufficiently small, J must be sufficiently large. (0.5p)

By definition, J satisfies (2))~* — [2n(J + 1)]7* < s (1p)

1

Divide (27/)~% and Taylor expand the expression, we have | > %(z%a)“_“ (1p)

1

1
Since J is the smallest number satisfying this inequality, | = ﬁ (zn—a)a“ = ( 2 )"‘Jr1 (0.5p)

s 2m)%s

B4. (3P) BOX COUNTING it E# &

For small enough s, calculate B(s) in terms of a and s. Note that here we use one-dimensional interval with length
no more than s (instead of two-dimensional boxes as given in Part A) as “boxes” to cover the intersections.

XEH N s, KB(s), MaMskr, IR XEBNBKEELH s W—4HER (MAZABIFH
THIETIR) BR BT REBEXERR.



For 1 < j <], each of the intersection point needs to be covered by one box, since these points are far apart. For
Xy

j >, we need x; /s boxes to cover the entire 0 < x < x; range. Thus B(s) = ] + - (2p, one for each term)

s
Note: since ] is large, answers suchas B(s) = (J — 1) + % orB(s) =]+ % can be considered equally right and

get full marks.

Insert the expressions for J and x;, we have
1 a 1
B(s) = [% (2ra)a+t + (21ra)_m] s a+1 (1p, where coefficient 0.5p and power dependence of s 0.5p)

B5. (1P) iTE 4% BOX COUNTING DIMENSION

Calculate the box counting dimension of the intersections dg in terms of a and s.
KEZROUTELEL d;, Ha s K.

Take log of B4 in the small s limit, we have dg = 1/(1 + a).

PART C B 2L M4 9T E 4% THE BOX COUNTING DIMENSION OF A COMPLEX NETWORK

In the following, we will discuss network formed by vertices and their connections. We can use a generalized
version of box counting dimension to analyze the feature of the network. Now the generalized “box” is no-longer
square in the geometrical sense, but rather we require that the distance of any two vertices within a box to be no
more than s (i.e., a vertex in a box needs to travel at most s edges to connect to any other given vertex). All the
boxes can cover all the vertices. A vertex can only be in one box. The box counting dimension is calculated from
the minimal box required.

THE, BT TRMNT KR BEEERAREME. BT BT T EABCRTNEREIL. X

B, #H 2T AER/IUARXLENESE, MERERETEERITREMNERRAEZT s (Bt
M PRAREZBE s FORTUERIETENE—HEDR) . MENETHBESIETR, FTENE

TEEENTRAEERE. TEESTMNBEEN EFHNERIETERITE.

C1 (2P) BB A4 32 W48 THE SOCIAL NETWORK OF DOLPHINS

The below figure is a dolphin social network recorded by researchers:

TEAFRARICF—NEBHEFAN ML




After analyze, we get

Zd o LR, FE

1.6 =3
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Suppose the slope of the plot at s = 0 (in a complex network, since s = 1, the s = 0 limit can only be understood
in a sense of continuation) shows the same trend as the slope formed by the s = 3 and the s = 2 data points (for a
fractal complex network, this slope should be a constant). Estimate the box counting dimension of the Dolphin
network using the s = 3 and the s = 2 data points.

B s > 0 UEBAVE (EEAMGSH, BTFs>1, s 0 WERREEHFEROEN LEX) 55=3
s = 2 BB EAONRATIERNAIIEE (WTARERMSE, SINANERZENES) | B
s =370 s = 2 AR B ML M B4,

C2 (2P) oM £& 9 R THE SCALE OF THE FRACTAL NETWORK



Assuming the complex network has number of vertices N, > 1 with a fractal structure and box counting
dimension dj. Estimate the average distance 7 between nodes using N, and dg (as an estimate, we ignore the
difference between average distance and maximal distance, and ignore 0 (1) constants in the limit of an infinite
network).

WERMBTRNEA No > 1, WERBEREN, HERECN dp, HA N M dp BT RZEF
HEEE T (fEAMET, N2 FIEBNRAEBSNXS], HABEMNETLTSARRTHOQ) FEH) .

Solution: From the experience of the previous question, we noted that dgz can be estimated from the slope of the

(log(s),log B(s)) curve. Take s ~ 0(1), from the fractal structure of the network, the nodes in the box B(s)
should behave similar to the whole network. Thus,

logB(s) —logB(s =7) logB(s)
log7 —logs log

B

Note that log B(s = ) = 0(1) and logs = 0(1) are neglected in the last step of the above equation. Since we
have taken s ~ 0(1), B(s) ~ Ny. Thus, 7 ~ Nol/dB.

Alternative Solution: The students may get an intuitive solution 7 ~ Nol/dB directly, by imaging 7 and N, as the
length and volume of a dz-dimensional cube. Though mathematically this is not rigorously following our
definitions, we can also give full marks to this solution.

PART D & Z- W 4% ) & 2 /¢, THE RENORMALIZATION OF COMPLEX NETWORKS

When calculating the box counting dimension, we use boxes to contain vertices. Now we can construct a new
complex network: the vertices of the new network corresponds to the boxes of the original network. If in the
original network, a vertex in a box connects to at least one vertex in another box, then the two boxes of the new
network (considered as two vertices in the new network) is connected. For example,

AUETEAHNNE RMNAEFETR K Bk, XN, FRMNTMUGE—DFNEZRME @ WL
MPTREREAMENET  MREMZ-—IETEN - ITRELERIZAETENEAYR, U
FNEEXRIET BIFNEENRITR) Bk, G

G R(G) G R(G)
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D1 (2P) EE K EMITEZE$L THE BOX COUNTING DIMENSION AFTER RENORMALIZATION

For a fractal network, let the box counting dimension of the original network be dg, after renormalization with box
size s, calculate the box counting dimension of the new network.



WML, RENROITERR A ds, EHTEFREN s WEELGE, RKINZNITELEE.
Solution: dg (because of self-similarity. Or one can calculate using slope, taking boxes with size larger than s.)

D2 (4P) [a W& RN FE % $E ADDING LONG RANGE CONNECTIONS TO A NETWORK

Many complex networks in our real life do not look like a fractal network. For example, you may have heard the
“six degrees of separation”, that through at most six people, you can use “friend of friend of friend of friend of
friend of friend” connection to know any person in the world. Thus, we often feel “what a small world”!

BT RPHNREERXANEE EEHAEOME ., Hlm, RIUEFRT RNESREL |, e
W, REZBIADA, REM HEAMNALXNALXNALNALNAL B770AMRER EEET—DA
Fie, NEFRF HRANT

Usually in a fractal network there are too few long-range connections, not enough to have the “small world”
feature. To describe a “small world”, we randomly add long-range connections to a network: For any pair of
vertices with distance r (r > 1), we randomly add connections to these vertices with probability p(r) =

Ar~® (a > 0). For large enough r, these newly added connections dominate the connections of the new network.

BEADEMERIHNKEEZFED, FEMEE YMEFR o A THRARERN MR &R, &
ME—MDTEME PRI —EKEERE S TEAESAr ORI (r>1) , FMNMUERp() =
Ar=®(a>0) IMRERXFW I DR, NTEBRNr, FAMOXLEEZEHRMNENTEZERET.

Now, we perform renormalization of this network with box size s. After renormalization, the new distance r; of the
new network is related to the original distance r of the original network by r; = r/s. After renormalization, for the
new network, at sufficiently large distances, calculate the probability p,(r;) that two vertices are connected, as a
function of 4, s, @, dg, 15. (Here dj is the fractal dimension of the original network before adding long range
connection. Before adding long range connections, we can consider the network in the box as a sub-network
similar to the whole network.)

W, BMNYMWEMETREN s WEREMK. EREMAE, FWNE LMD SIHME EMNERS r XA D
n=r/s. REBWUE WNEEELBAEBL BITRZEMEERRp(), AAs ads R,

(XE dp ARIKIESER], ENENITELE. AAIKEEREN, TRBETENNEENE— 5%
NMLERIAS T ML, )

Solution:

Consider the old network. Let the number of nodes in a typical renormalization box be Ny. Since s > 1, we have
N = 598, (1p)

For two such boxes, the probability of no connection between two boxes is [1 — p(r)]”bz? (2p). Note here 2 in N2 is
because you can first calculate the probability between one box and any single node in the other box. This factor of
2 deserves 1 point.

2dp

Thus, ps(ry) = 1 — (1 — A(s15)™%)S

D3 (4P) E BB A G &= THE FIXED POINT OF A RENORMALIZATION GROUP



For a large enough network G, we can apply the renormalization procedure R repeatedly, to get R(G), R(R(G)),
R(R(...R(G) ..)) R(G),R(R(G)),R(R(...R(G) ...)). This repeated renormalization procedure is known as the
renormalization group. If after sufficiently many operations, the statistical property of the network no longer
changes (in this problem the probably of long-range connections no longer changes), we call the network after
many renormalization the “fixed point” of renormalization group (here, the “point” in fixed point means that, in
the space of all networks, each network is considered as a point). Since infinite iteration is difficult technically, we
alternatively take one renormalization with the s — oo (but still s « 7) limit. For different values of a, after adding
long-range connections with probability p(r) = Ar~%* (a > 0), calculate the expression of p(r) on the fixed point

n
(i.e., determine all possible cases of py(7;) as 1; = ). You may use an identity lim (1 + ) =e.

n—o0o

XTRBERIWE ¢, BTUREHTERBMEREER, B2 RG), R(R(G)), R(R(..R(G) ..)). XTHRE
EERIEI BB, ﬁﬂ%l_ﬁﬁﬂzéé REEWBREERE, MENGITHERAFRE (REFER A
KEERMOMEATNE) | RMNHRXHERIRSABRAUONEAETRAEN T . (XESW
BRR FENSEANZET, GINEERRET—ITR)  BTESRERERAR LRERE, A
WO UBLERR s > oo (BERMARE s K 7) WIRRERRB LS RIERWEE. RIE o« WAREE, KUHE
Epr)=Ar~(a>0) FINKBEREZR, EENENAINE L p(r) BFRER (BITE 7, » o ARERTIT

HHE p(r) WIRRIER). RIS lim (1+1)" =e.

Solution:

2dpg

Note that (1 — A(s7) ") = [(1 — A(s1y)"*)*“|* (s248~%) ~ exp (—A 1y *s24B~%) _(1p)
Thus, p; = 1 — exp (—A 1y %*s%3B=%) has three cases:

When 2dz — a > 0, p;, = 1 (complete graph fixed point). (1p)

When 2dz — a < 0, ps = 0 (fractal fixed point). (1p)

When 2d; — a = 0,p; = 1 — exp(—A r~248) (small-world fixed point). (1p)

Note: the names of the fixed points just indicate the physical meaning. The students only need to write down the
different cases and probabilities (each 0.5p), no need to write the names of the fixed points.
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