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All final answers should be written in the answer sheet.

P e B R E A L

All detailed answers should be written in the answer book.
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There are 2 problems. Please answer each problem starting on a new page.
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Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering the questions. No working sheets for
rough work will be distributed.
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If the answer book is not enough for your work, you can raise your hand. Extra answer books will be provided. Your name and
examination number should be written on all answer books.
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At the end of the competition, please put the question paper and answer sheet inside the answer book. If you have extra answer books,

they should also be put inside the first answer book.
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Problem 1: Spatiotemporal varying electric permittivity (30 points)

B3 1: =T EEE (30 49)

In electromagnetism, dielectric media, e.g. a block of glass, is represented by a permittivity different from the one of vacuum. The
reflection and refraction for electromagnetic waves on a slab of dielectric material can be derived from considering dispersion
relationship and matching boundary condition.
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In the question, we would like to investigate the Fabry-Pérot resonance from a slab of dielectric medium in the first step and the
analog concept when the permittivity of the material becomes inhomogeneous in the time domain instead of the spatial domain.
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Figure 1 shows the schematic diagrams for light entering a block of dielectric medium at normal incidence. The left diagram shows
the case for a block of infinite thickness, in which the light only undergoes one instance of reflection and refraction at the interface.
The right diagram shows the case for a finite thickness, in which the light ray undergoes multiple reflections within the slab. The
spatial and temporal axes are the horizontal and vertical ones respectively.
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Fig. 1: (Left) Schematic diagram for a light ray entering an interface between vacuum and dielectric medium (Right) Schematic
diagram for a light ray entering a slab of dielectric medium undergoing multiple reflections.
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PART A. Fabry-Pérot resonance x40 EL-FAZ SR A (13 points)

To obtain the amount of light being reflected and refracted from a block of dielectric medium, we start from the Maxwell’s equations:
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where the curl and div operators are defined by
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The constitutive relationship for the dielectric material or vacuum in relating the different field variables are expressed as
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D =e¢(x)E
B =pu,H

In this part, the electric permittivity profile e(x) only varies in x but not in y, z and t. All the materials are non-magnetic, having the
same value of magnetic permeability p, of vacuum. We only consider electromagnetic waves which propagate in the x-direction.
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Al We consider an electromagnetic wave propagating only in the x-direction specified by E = JE, (x, t), 2 Points
H = 2H,(x,t). Reduce the Maxwell’s equations to two differential equations only on E,, and H,. Each 245
differential equation is first order in both temporal dimension t and spatial dimension x.
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A2 For a sinusoidal wave propagating in the positive x-direction in a medium of constant permittivity €, (e.g. 2 Points
in a glass), it has a form E,, = E;;, cos(k;x — wt). Find the dispersion relationship between k; and w 245
XN REEON e WA (GIINEBEET) hil x 07 BRI IR LS, ey E, =
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Now, we consider an interface between vacuum and a dielectric medium (see left panel of Fig. 1). A fixed incident electromagnetic wave
E,, = Ej;, cos(kyx — wt) propagates in vacuum to the right hand side before entering the dielectric medium. The permittivity €(x) in
this case is a step function, being €, for x < 0 and ¢; for x = 0.
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A3 Suppose the transmitted waves is represented by E,, = E, cos(k;x — wt + ¢,) (where 0 < ¢, < 7). 5 Points
Find E; and ¢, in terms of E;,,, w and the permittivities €, €, 59
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Now, we consider a plate of dielectric medium with a finite thickness £, with a fixed electromagnetic wave shining normally to the

plate. There will be multiple reflections and transmissions between the two interfaces of the dielectric medium (see right panel of
Fig. 1). The incident wave is still fixed as E,, = E;;, cos(kox — wt) while the total transmitted waves after the whole slab of dielectric

medium is now specified by E,, =Et(t°t) cos(kox—(ut+¢t(t°t)), by summing all the multiple reflections and transmissions
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A4 Derive the maximum value for |E{**Y | when we can choose an optimal value of £ . Derive the condition 4 Points
for such 2. 493
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PART B. Time-varying permittivity A 25 /B8 & %1 (14 points)

We have considered a boundary of the permittivity profile in the spatial domain x. Now we go to the complementary problem. Suppose
the electric permittivity is constant in all spatial dimensions but varies in temporal dimension t. For example, materials like LiNbO5 will
have its permittivity changes with time when a DC voltage is applied across the material through the Kerr electro-optic effect.
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Fig. 2: (Left) Schematic diagram for a light ray entering a time-boundary in which the permittivity changes from €, to €, (Right)
Schematic diagram for a light ray going through two time-boundaries. The permittivity changes from €, to €, at t = 0 and changes
backtoe; att =T.
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In a similar fashion, left panel of Fig. 2 shows the trajectory for a light ray originally propagating in a homogeneous medium in the
positive direction. Then, the permittivity suddenly changes from €, to another value €, at t = 0. In the right panel, we now have a “slab”
of such time-varying material in the time domain. The permittivity changes back to €; at t = T. The blue arrows show the light rays. At
every boundary, the ray splits in a forward and backward propagating ray. As the initial ray is propagating to the right, we call the left
propagating wave as “reflection/backward propagating” and the right propagating wave as “transmission/forward propagating” after a
time boundary. Note that the rays can only propagate in the positive time direction.
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To be specific, consider an electromagnetic waves propagates in an infinite block of dielectric medium originally. Suddenly, at time
equal to zero, the dielectric constant in the whole space changes from €, to €,. We call t = 0 as a temporal boundary. See left
panel of Fig. 2.
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B1 What are the continuity conditions in this case across the time boundary? 3 Points
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Initially, the electromagnetic waves is specified by E = JE; cos(k,x — wt), a forward propagating waves in the positive x direction.
After the permittivity has changed, there is a backward propagating waves (along the negative x direction) and forward propagating



2

waves (along the positive x direction). They are defined as the temporal reflection and temporal transmission waves.
£, BN E = 9E, cos(hyx — wt) | BIERE x H LHATAER. NEEMXER, GrEEHEGE CRfx k)
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B2 The angular frequency has changed from w to another value w’ across the time-boundary. Express w' interms | 3 Points
of w and the permittivity values. 39
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B3 Express the amplitude of the electric field of the backward propagating wave and the forward propagating 3 Points
wave. 345
SR A% FEBCRT T [ 4% 4R K LI IR

Suppose the whole medium goes back to a dielectric medium of permittivity of €, after time t = T (see right hand side of Fig. 2).
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B4 Find out the amplitude of the backward and forward propagating waves finally. What is the condition to 5 Points
get minimal reflection? 54

R e B G AR BT A AR A IR . SRS /NS B AR A A 47

PART C. Spatiotemporal permittivity B} %3 25 4B & %X (5 points)

In the final part, we consider the case that the permittivity has to be written as a function in both x and t, i.e. €(x, t). For a simple case,
the permittivity function consists of two constants: €, in the white region and €, in the gray region, a so-called spatiotemporal boundary
depicted in Fig. 3. The spatiotemporal boundary is defined by a straight line x = —ut
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Fig. 3: A spatiotemporal boundary. In the white (grey) region, the permittivity is €, (€,)
3:WEILR. AAE (KE) KE, NMBEFEEH e ()

C1 What are the continuity conditions in this case across the spatiotemporal boundary? Hint: You may need 3 Points
to consider a coordinate transformation. 34
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Problem 2: Fractal Dimensions of Networks (30 points)

[B13] 2: PIL&R A9 AR (30 )

A line is one-dimensional, a plane is two-dimensional, and the volume of a ball is three-dimensional. Is the dimension of an object
always an integer? What’s the dimension of a coastline? What's the dimension of the Internet or social network? The dimension of
complicated objects is an interdisciplinary study between physics and many other sciences. Here, we will use “box counting dimension”
to discuss the dimension of fractal and complex network objects.
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Based on this, we discuss the “renormalization group” of a complex network. Renormalization group describes how physics theories
vary as a function of scales, and thus is “theory of theory”. Renormalization group is first discovered in the quantum field theory of high
energy particle physics and condensed matter physics. Here, complex networks made by vertices and edges, is probably the simplest
example to introduce renormalization group.
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Part A. Fractals and Box counting dimensions 223011 & 4 #X (7 points)

We cover an image using squares with side length no more than s. Let B(s) be the least number of squares to cover the whole image.
Then the box counting dimension dj is
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d =1i log B(s)
B = sl—r}(}log(l/s) '

In this problem we assume the above limit exists. For example, the Sierpinski carpet is the infinite-time iteration of the following figure
(in the following figure we only displayed the first two iterations). Through infinite iteration, self-similar patterns emerge in the
following figure. Such complex objects are known as fractals. In each iteration, in the nine squares, the center one is removed. What’s
the box counting dimension of the Sierpinski carpet?
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Here, after each iteration, we can use squares to cover the image, with side length s which is equal to the side length of the dark box.

Let the length of the whole Sierpinski carpet be L. Then B (s = 5) =8,B (s = g) =64,--,B (s = i) = 8™. Note that here the limit

3 3n



s = 0 is equivalent to the limit n — co. Thus, the box counting dimension of the Sierpinski carpet is

X2, EHAERE, BOTMMLK s STRESROEALREEET. BB HREIEBOKELL 1
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4 =1i logB(s) I log(8")  log8
B slirt}log(l/s) e log(3"/L) log3"

(Note that in the sense of taking limits, whichever unit we use, log L is negligible compared to log 3™ in the above equation.)

CERE, ARMRAOBEXT, TRBHASA, ERXF logl M log3™ HAELLE T IXZHE. )

Al The randomized Sierpinski carpet is the infinite-time iteration of the following figure (in the following figure 2 Points
we only displayed the first two iterations). In each iteration, a random square among the nine is removed. 249
Calculate the box counting dimension of the randomized Sierpinski carpet.
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A2 The Hilbert curve is the infinite-time iteration of the following figure (in the following figure we only 2 Points
displayed the first three iterations). Calculate the box counting dimension of the Hilbert curve. 249
AREFMEE TENLESER (TEFRBRTERNII=X) . KERBEFHENITELEL.
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A3 The below is one form of Cantor set, defined as the infinite-time iteration of the following figure (in the 3 Points
following figure we only displayed the first three iterations). Calculate the box counting dimension of the 39
Cantor set.
—MEANRERES TENESERK (TEFRABRTERNII=X) . KRERENITERL.
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Part B. Intersection Between a Spiral and the Positive x-Axis 32 jjF 2% 5 IE x5l Y 3 5 (9 points)

Consider a spiral r(8) = 67% (a > 0) in polar coordinates. Consider all the intersections between this spiral and the positive x-axis
(i.e., the ray 8 = 0 starting from the origin). We will call them “intersections” for short. What’s the box counting dimension of these
intersections? We will solve this problem step-by-step in this part. (Note: in the calculation, we will allow 8 — +o0. In the below figure,
we have not shown the large 8 behavior.)
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B1 We denote the 6 value of all the intersections by 8 = A j, where A is a constant, j is non-negative 1 Points
consecutive integers. Calculate A and calculate the range of j. 149
PEXRK O BT =1), HPANER, j ATESBENFERES. RKANE MEB
BUESEE.

B2 Calculate the horizontal axis x; of the intersection labelled by j, as a function of j and a. 1 Points
K28 j AR, B fla Row. 15y

The distance between neighbor intersections $H483< & #3[8) BB

B3 Given a very small length s. Suppose J is the smallest number which satisfying the following condition. 3 Points
BE—NERBNIKE s, & HEOTHRENTNOETF 397

xj — Xjq < sforall S FFH)j =)
Calculate /, in terms of @ and s.
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Box Counting Dimension i+ & #E

B4 For small enough s, calculate B(s) in terms of @ and s. Note that here we use one-dimensional interval with | 3 Points
length no more than s (instead of two-dimensional boxes as given in Part A) as “boxes” to cover the 39
intersections.

XEHNs, KB(s), BaflsFr. IR XEBRMNBRKEEZH s W—HER (MAZ A ZBD
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B5 Calculate the box counting dimension of the intersections dg in terms of a and s. 1 Points
KX DMITEH# T d, B aflskr, 145

Part C The Box Counting Dimension of a Complex Network & Z: M 4% i) 1T E 4 %X (4 points)

In the following, we will discuss network formed by vertices and their connections. We can use a generalized version of box counting
dimension to analyze the feature of the network. Now the generalized “box” is no-longer square in the geometrical sense, but rather we
require that the distance of any two vertices within a box to be no more than s (i.e., a vertex in a box needs to travel at most s edges to
connect to any other given vertex). All the boxes can cover all the vertices. A vertex can only be in one box. The box counting dimension
is calculated from the minimal box required.

TH, BMETEHRfh Rz BERERNNEG . RO UBET NITERECROITNENRE. XN, #08 ZEF
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BB M4 THE SOCIAL NETWORK OF DOLPHINS

The below figure is a dolphin social network recorded by researchers:

TEAARARIEFR—MEBHEFARN WL

After analyze, we get

Zdpit R, 53
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vertical axis (Z\ 22 %R) :

19 log B(s)

0.8
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
log s
C1 Suppose the slope of the plot at s — 0 (in a complex network, since s = 1, the s = 0 limit can only be 2 Points
understood in a sense of continuation) shows the same trend as the slope formed by the s = 3 and the s = 249

2 data points (for a fractal complex network, this slope should be a constant). Estimate the box counting
dimension of the Dolphin network using the s = 3 and the s = 2 data points.

g s - 0 (HLERIR (EERMED, BHTs =1, s> 0 WIRRRBAERFERNEXLEX) 5
s =3Ms =2 WMEIERELNPREBIEROEZHER (FTAHRERMEL, XPREFIZED
FH) . EAs =3 s =2 RPN EIEAEITTERMENITEAE.

THE SCALE OF THE FRACTAL NETWORK M £ B R E

c2 Assuming the complex network has number of vertices N, > 1 with a fractal structure and box counting 2 Points
dimension dg. Estimate the average distance 7 between nodes using N, and dj (as an estimate, we ignore 245

the difference between average distance and maximal distance, and ignore 0(1) constants in the limit of an
infinite network).
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Part D The renormalization of Complex Networks & Z& M £& 14 & 4V, (10 points)

When calculating the box counting dimension, we use boxes to contain vertices. Now we can construct a new complex network: the
vertices of the new network corresponds to the boxes of the original network. If in the original network, a vertex in a box connects to at
least one vertex in another box, then the two boxes of the new network (considered as two vertices in the new network) is connected.
For example,
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D1 For a fractal network, let the box counting dimension of the original network be dj, after renormalization 2 Points
with box size s, calculate the box counting dimension of the new network. 24

NREME, REMZTELEA dy, BHATETREAs MEEKE, KFMNENITELLE.
Adding Long Range Connections to a Network [5] [ 4& RN TEE
Many complex networks in our real life do not look like a fractal network. For example, you may have heard the “six degrees of

separation”, that through at most six people, you can use “friend of friend of friend of friend of friend of friend” connection to know any
person in the world. Thus, we often feel “what a small world”!
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Usually in a fractal network there are too few long-range connections, not enough to have the “small world” feature. To describe a
“small world”, we randomly add long-range connections to a network: For any pair of vertices with distance r (r > 1), we randomly add

connections to these vertices with probability p(r) = Ar~® (a > 0). For large enough r, these newly added connections dominate the
connections of the new network.
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D2 Now, we perform renormalization of this network with box size s. After renormalization, the new distance r; | 4 Points
of the new network is related to the original distance r of the original network by r; = r/s. After 4 4y
renormalization, for the new network, at sufficiently large distances, calculate the probability p,(7;) that two
vertices are connected, as a function of 4, s, a, dg, 15. (Here dj is the fractal dimension of the original
network before adding long range connection. Before adding long range connections, we can consider the
network in the box as a sub-network similar to the whole network.)

WME, RMYMEMETREAD s WEENL. EENE, FWE LS SIHME EAEEE r X
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The Fixed Point of a Renormalization Group EE{ B IAFEN 5

D3 For a large enough network G, we can apply the renormalization procedure R repeatedly, to get R(G), 4 Points
R(R(G)), R(R(...R(G) ...)) R(G),R(R(G)),R(R(...R(G) ...)). This repeated renormalization procedure is 4 4y
known as the renormalization group. If after sufficiently many operations, the statistical property of the
network no longer changes (in this problem the probably of long-range connections no longer changes), we
call the network after many renormalization the “fixed point” of renormalization group (here, the “point” in
fixed point means that, in the space of all networks, each network is considered as a point). Since infinite
iteration is difficult technically, we alternatively take one renormalization with the s — oo (but still s < 7)
limit. For different values of a, after adding long-range connections with probability p(r) = Ar~ (a > 0),
calculate the expression of p(r) on the fixed point (i.e., determine all possible cases of p.(ry) as r; = ).

You may use an identity hm (1 + ) =e.
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AERALREME, BT UBER s - o (BRNAHE s < 7) HIRRERRB TS RIERNEE.
RIE a AEBE, KUK p() =Ar™* (a > 0) RiMKREEEZE, ERNENFHR L p@) B

FIAR (B 7, - oo IR T EE p,(n) WIRBRIER). RIS lim (1+2)" =e.
~End of Part2 &-2 5 ~
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