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1. Consider a lollipop made of a solid sphere of mass m and radius r that is radially pierced by a massless stick. The free end of the
stick is pivoted on the ground. The sphere rolls on the ground without slipping, with its centre moving in a circle of radius R with

angular velocity € (along —Z direction). The moment of inertia of a solid sphere along the symmetric axis with mass m and radius r

) 2
is] = gmrz.

(a) [3] What is the (instantaneous) total angular velocity @ of the lollipop? Express your answer in terms of 7, R, (0, £ and Z.
(b) [4] What is the angular momentum L of the lollipop? Express your answer in terms of m,r, R, ), £ and Z.
(¢) [3] What is the normal force N between the ground and the sphere?
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(a) The total angular velocity

gl

=—-0Z+w'X
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where
X, =cos@X +sinfz, X; =-—sinfX + coshz2

The point of contact is R = R%, and the condition of pure rolling implies,

Rx@=0
= —O0y+w'sinfy =0
, Q
=3 =
@ sin 6
- Q ) RQ
w=—Q02+——(cosOX+sinf2) = Qcotfx =—2%
sin 6 r
Alternative solution:
The CM of the sphere moves with
Uom = —QRY
If the spinning of the sphere along %, is ', the velocity of the contact point is
R Q
7=—0QRJ)+RXw%,=(—QR+Rw'sinf) =0=>w' = oy

o

=>5=—Qi+w’9?2=7x
2 7
I; = gmr2 +m@?+R?) = gmrz + mR?

Method 1: The moment of inertia along the x-axisis I,, = gmrz +mr? = gmr2

L,=Lw= §erQ

On the other hand,
L, = mR%Q

- 7
L= gerQJ? — mR?*Q2

Method 2: The moment of inertia along %5 is:

7
I; = gmr2 +m@?+R?) = gmrz + mR?

7 RO 2 RO
)cos2 0+ (gmrz + mR2>751n2 0= EerQ + m(r? + R?) TSan 0

=L, = §erQ

_ 2 RQ _ 7 RQ RO
L, = Lw, sinf + I;w; cos§ = gmr2 (Tcos 6 sin 9) + (gmrz + mR2> (—TSIHQ cos 9) =-m(r?+ Rz)TsmH cos 6
= —mR?Q

- 7
>L= gerﬂﬁ — mR%*Q2

(c) The lollipop is process along the z axis with angular velocity Q, we have

=gt
T



dL 7 ,
dt = QL, = =mrRQ

|ry| =R(N—-mg) = z

7
=>N =§mr92 +mg

Remark: Friction will provide a torque along 2 direction.

Itis interesting to see that the normal force is independent of R and 6.

2.1n 2018, the Nobel Prize in physics was awarded to Arthur Ashkin for the creation of the “laser tweezer”, a device that allows
one to hold and move transparent microscopic objects with the help of light. In this device, a parallel beam of light from a laser
passes through a converging lens L and hits a microparticle M, which can also be considered as a converging lens. Point F is the
common focus of L and M.

The light intensity in the beam is I = 1.00pW/cm?, the beam radius is R = 1.00cm, and the focal length of the lens L is F = 10.0
cm. Ignore the absorption and reflection of light. Speed of light in vacuumis ¢ = 3 x 108m/s.

(a) [3] Find the force (magnitude and direction) due to the light acting on the lens L , in the setup shown in Fig.2a. Express the
answer intermsof [, R, F and c.

(b) [2] Calculate the (numerical value) magnitude and direction of the force acting on the microparticle M, in the setup shown in
Fig.2a.

Next, the left half of the lens L is covered by a diaphragm, as shown in Fig.2b.

(c) [3] Find the force (magnitude and direction) acting on the microparticle in this case. Express the answer in terms of I, R, F and
c.

(d) [2] Calculate the (numerical value) magnitude and direction of the force in this case.
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Solution:
(a) Consider aring of radius r, the areais dS = 2mrdr. The change in the longitudinal momentum of photons passing through the
given ring per unit time is equal to,

I F
dp, =-(1 — cos 0)dS, where cos = ——
) ) Py c( ) ; T2
> I F ml F ml
>f=—9]| d =—A—f (1——>2nrdr=—A—f (1——>dr2=—A— R? — 2F\/F? + R2 4 2F?
h yfo =3z o =), o yc( v )
o™ (ap2 4 k2 2 (14 20 LR MR
A 2F2  8F*)) T "V 4cr?

Alternatively, we can use the small angle approximation,sin 8 = tan 6 = %
F = AfRd - AfRI 1- 1= 2mrar = A”I<R2 & [F3 (F? RZ)%D SR 6ax10-7N 5
fi==y| dm=-3] ¢ Fz | 2mrdr = =9 — 3F ~Vm =2 y

In this part, any method will lead to the resultﬁl = —y% in the limitg >» 1 will get full marks.

(b) Since the foci of the lens L and the particle M coincide, when leaving the lens-particle system, the light beam propagates
again parallel to the optical axis, the photon momentum is restored. As a result, the force acting on the particle M is equal in
magnitude to f, butis directed towards the converging lens L.

PR 26ax 107N 9
T4z’ T J
If use the exact formula, we have
5wl
F= ?(RZ —2FJF? +R* + 2F2)y =2.60x 10" Ny
(c) The transverse force is halved, F; = % =132x10""N

There is a longitudinal component when half of the lens is covered.

1 I
dp, = —sin @ sin B rdrdff = —————=sin Br?drd
pJ_ c B ﬁ Cm ﬁ ﬁ
Here sin 6 = \/ﬁ and B is the azimuth angle in the polar coordinates.
T
fd Ifrdﬁf " grsingdp ZlfR U Y P ey FZATh( K )
= =- ——— drsin =—| ——=dr=- — rcTanh { ———
PL Y S AN s clo NFZ¥rz ¢ VF? + R
=2.21x 107N
I F?R F?R3 1 R3 R3 2IR3
p. ~—|RJYR?+F?— - ===
c VRZ¥FZ 3(R*+F?)3%2) c\JyRz+F2 3F) 3cF
Approximately, we can
! 7Td fR 2drssi —21R3—224x10‘16N
pl~FC0 ,BOr rsmﬁ—3cF—.
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3. The toroidal cavity is designed to confine charged particles for nuclear fusion. This geometry enables charged particles to
follow helical magnetic field lines, allowing them to remain suspended within the cavity without coming into contact with the
walls. As depicted in the figure, consider a toroidal cavity with an outer radius R, and a circular cross-section of radius r,, where
1y K Ry. Inthe figure, O represents the origin.

(a) [0.5] If a wire is uniformly and tightly wound around the toroidal cavity for N turns, and the magnetic field inside the cavity is

given as: B, (r) = f(r)(sin $2 — cos ¢9), find f(r) in terms of N, I, R, 7, and relevant physical constants. Here r, ¢ represent
the radial and angular coordinates in a polar coordinate system on the plane.

However, the diamagnetic drifty caused by the gradient of the toroidal magnetic field tends to push the particles outward,
leading to a loss of confinement.

(b) [0.5] To address this, a uniform magnetic field B, = B,2 is applied along the z-direction. In this uniform magnetic field B,, a
particle of mass m and charge g moves in uniform circular motion with a radius R,, find the angular frequency w, of this circular
motion. Express the answer in terms of g, m, B,,.

(c) [2] For a charged particle with mass m and charge g, write down the equations of motion in the r, ¢, z directions for its motion

inside the toroidal cavity with El and §2. Express the answer in term of the dimensionless parameter a = ZZ;N; :
0P0

(d) [2] Based on the equations of motion derived in part (C), consider the case where the charged particle is slightly perturbed
from the circular motion described in part (B). Let the perturbed motion be expressed as: r(t) = Ry + 6r(t), p(t) = —wot +

S (t),z(t) = 6z(t). Here, we assume 81, 6z < R, and 6¢ « 1. Derive the equations of motion that are expanded to the first
orderin 8r(t), 6¢(t), 6z(t).

(e) [2] Given initial conditions: 67r(0) = 0, §7(0) = v,, 8¢(0) = §¢(0) = 5z(0) = 6z(0) = 0, find 6r(t) and 6z(t).

(f) [3] To prevent the charged particle from colliding with the walls of the toroidal cavity after being perturbed, what conditions
mus
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Solution:
(a) From the Ampere’s law,

fﬁ a7 = NI = () = HoM
r_MO fr - Zn_r
(b)
qRywoBy = mngo
qB,
ﬁ(L)O:—

(c) The acceleration of the particle can be written in term of cylindrical coordinate,
7 =rf+22
V=7 +rdd + 22
a=(#—rp?)t + (2r¢ +rd)d + 22

- UoNI - . Ry . .
B=_2ﬂ_’r¢+B0Z=_aBOT¢+B()Z
The magnetic force becomes:
S>3 A P2 s aBoR, R aRy ,  aRy .~ o "
qu X B = q(rr+r¢)<;b +ZZ) X (— - [0) +BOZ> = Byq (—Trz+72r—r¢ +r¢)r>
. aRyz .
m(# —rd?) + qB, (— ro - rd)) =0

m(27’"<i) + rd)) +qgBy7 =0
. aR,7
mZ+ qB, ( - ) =0

6'}: + w0R05¢3 - aw062 =0
R05(ﬁ - (1)057:‘ =0
67 + awy 01 =0

(e) From part d, we have
Ry8p = w,or
6z = —aw,0r
§¥+ (1 + a®)wiér =0




v, sin(Qyt
= or(t) =OQ—E0)' Qy =V1+ a?w,
avy(1 — cos Qqt)

bz(t) = - QI+ a2

Also,
wo . Vo sin(Qt)

§p=—06r=—o-o--">"
PR T kit e

85r? + 6z <1§

: r303
(1 — cos Qpt)? + sin? Qt < 2 1+ a?

0

L _ ¢
1+ a?)

2
If% > 1,i.e. a > 1, the maximum of the function is located at Q,t = m and we have

4a? 1wk % 1+ a?
$—2<020(1+a2)=> 0
1+a v§ ToWq 2a
2
If% < 1,i.e.a < 1,the maximum s at cos Q,t = —a? and we have

éw

2
>1+a2< 20(1+a2)$
vE ToWo

Vo

<1




4. Harrison and the Longitude Problem

Accurate measurement of the longitude was a long-standing problem in sea navigation. The earliest solution to
this problem was to compare the local time at a location with that of a meridian. However, there was not a
clock accurate enough to ‘preserve’ the absolute time of another location during a journey, until the inventions
by the 18 century English clockmaker John Harrison.

(a) Let us start our discussion on the simplest type of clock, which is maintained by a vertically hung simple
pendulum. It is made of a heavy bob of mass m, hung by a rod of length L and negligible mass, to a hinge.
The timekeeping is evidently sensitive to temperature fluctuations.

(ai) [0.5] For a simple pendulum clock, would thermal expansion make it go faster or slower?

(aii) [1.5] In adjustment, Harrison proposed a modification to the rod of a pendulum, now consisting of two
types of metals (of thermal expansion coefficients @; and a, respectively) by installing a central piece of metal
2 of length I'. Which of the 3 proposals in Fig. 4a can suppress the temperature fluctuations? How long should
the middle piece I' of metal 2 be such that the total length of the rod L is independent of temperature
fluctuations in this proposal? Express your answer in terms of L, a; and ;.
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(b) [3] Another problem is that simple pendulums were affected by the motion of the ship it was on. To
evaluate this effect, consider a ship’s journey between two cities separated by D = 96 km shown below.
Starting from rest at noon, the ship first accelerated forward at a constant rate, then maintained a constant
velocity v, = 27 km h™? until it decelerated at the same rate to arrive at the destination. The two cities are in
the same time zone, and upon arrival, the local time was recorded as 16:00:00. Assuming that the pendulum

clock was perfectly calibrated with real time upon departure, what-time-did-itrecord-at-the-end-of the journey?
Pleaseround-your-answer-to-the-nearest seeond-— calculate the numerical value of the time difference between

the pendulum clock and the real time at the end of the journey?

(b) [3 53] SH— AR AR 2 B P s o g2 o 9 TR X —5200 » =5 B — MR PRIk
T Z [RIEIATT - X EESRTAHEE D = 96 km > MIEIFR o MM PRIt - H e LUEENZRE [FI AT
IR > ZRIELMEERE vo = 27 km h™ 175 » 55 DIAH [E] B R RERE 2K H Ayt - X PR ir 5
[E]—H X > fEEIEARS lafzéﬁélﬁﬂﬂj‘ IEW] 16 00:00 « FOEFEFEH AN E5 H LN [ 58 2R AE - AadE

B R A S A A= BRIE 45 R I PR P S5 52 b

N

If [) < [R] IN [B] 22 HY AT ©

boat (with pendulum)
i CHASIE) v

/ N
city A city B
it A Yt B
0
D 12:00:00 16:00:00
Fig. 4b

(c) To design a clock that can mitigate the effects discussed in the previous part, Harrison built the following
clock, known as the ‘H1’. Let us consider a simplified model of the H1 clock, shown below (on the left).

Two massive dumbbells, each of length £ joining two metal balls of mass M, are connected by two identical
springs of stiffness k. The middle contacts ensure that the rotations of the dumbbells are always in antiphase.
The oscillations of the dumbbells are used to determine time.

(ci) [0.5] Just from the simplified design, one can see that its accuracy is not affected by translational motion of
the ship. Which of the following correctly summarizes the reason behind it? Select only one option.

A. Spring can be made exceedingly stiff, such that elastic forces dominate by orders of magnitude over gravitational
forces or any net force due to acceleration of the ship.

B. Stabilization of the clock is actualized with the springs in the H1 clock design. Therefore, the dumbbells stay
level during ship motion, and their oscillations are always perpendicular to gravity.

C. The HI clock is effectively equivalent to a gyroscope, which removes any bias due to translations of the boat
owing to the mechanism of precession.

D. In the non-inertial frame of the ship, the metal balls on each dumbbell experience equal and opposite torques due
to translational effects, so they cancel out and do not affect oscillations.

(cii) [1.5] Determine the period T of small oscillations of the HI clock design in terms of M, k and #.

(ciii) [3] However, Harrison’s H1 design still has many problems. For instance, let us consider the rocking of
the ship, under the influence of waves. Let us consider a small model toy boat with the clock on board that
moves on a sinusoidal landscape of the form z = A, sin(2mx /1) at a constant speed vy, as shown below. What
is the time-averaged new oscillation period of the clock (T’), considering that v,T' < A, < A, and that the

. . . (1T
dimensions of the boat/clock are much less than A,? Express your answer as the ratio %
d?
Hint: the radius of curvature R of a curve z(x) is given by 1x dxi



Despite being problematic, the HI clock proved to be fairly accurate in seafaring missions. Harrison later
produced H2, H3, and H4 clocks, which were increasingly accurate, solving the longitude problem. Today, we
can measure longitude to centimeter level precision owing to GPS technology.
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Solution:

(ai) The period of a pendulum is T, = 2m,/L/g < VL. Upon thermal expansion, L increases so the period
increases and so the pendulum goes slower.

(aii) Let the length of the first rod (made of metal 1) be L,. Originally, 2L; — l' = L. Suppose for an increase
in temperature by AT, the lengths of the two rods are L; (1 + a;AT) and I'(1 + a,AT), we need

2Li(1+ ayAT) —U'(A+ a,AT) =L = 2L AT —lU'ayAT=0 = I'=—"1,
Therefore, substitute back in L; = (L +1")/2, we get
I' =

aq
o —ay

L
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(b) Despite the clock going wrong, we are sure that the journey took T, = 4 hours. Let the common
acceleration and deceleration be a. Then, by kinematic considerations,

Vo
to =—
1 2 0 “ 2
(40 Vo _
Ea(z) X2+(TO_T)UO_D
(°+T 2”") D
= e —_ | =
Vo a 0 a
Vo D
:>_:T0__
a v,
Vo
= 7] =
¢ To — D /v,

When the pendulum is oscillating in an accelerated frame, the bob experiences a fictitious force of ma, so the
net effective gravity it experiences is gesr = +/ g% + a?. The effective period T is:

2L L 1a?
Tett = o ayia ~ 2™ [Z\1- 773
(g% +a?) 9 49

Hence, the ship’s clock is faster than expected, and since it is a second-order effect, the same change in period
occurs during acceleration and deceleration.

Suppose the pendulum oscillates N cycles during the acceleration, we have

t
NXTo=t,=>N=—"
Teff
The total difference in time is:
T “ 1a? /v, vE
At = N(T, — T, )><2=(——1)>< — X2~ —-——|—)X2=——-——=x=18X%X107%*s

o e Tegr (a) 492(a) 292 (TO_R)
Vo

(ci) The answer is D.
(cii) Let the rotation angle of the dumbbell with respect to the ‘vertical’ be 6. In the state as shown in the
figure, the net torque on the dumbbell is:

£ £ ? ? sin 20
T= (—cosH X 2) (k—sinH) — (——cos@ X 2) (k—sin@) =

2
2 2 2 2 2 ket
The moment of inertia of the dumbbell with respect to its center of mass is I = M(£/2)? x 2 = M£%/2.
Hence, the equation of motion of the dumbbell is:
Me?Z sin 26 . 2k

s _ > _
T—19:>—29 2k€ = 0 MB

e
— T 12k

(ciii) In the non-inertial reference frame of the boat, the effect leading to a change in oscillation period is a
torque-inducing unevenness of centrifugal force acting on the dumbbells. First, the radius of curvature of the
sinusoidal track can be found as follows:

1 dzz_A (271)2 _ (Zn )
R axz” 72\7) M\

Hence, the period of oscillations is:

11



R<O .

R>0 0.

For R > 0, the centrifugal force induces an extra torque 7, which tends to align the dumbbell with its “vertical’,
given by

7 9= "R

£ l Mw?[? Mv2[?
szAF(Esiné?)=M(a)2(R—l)—w2R) (Esine)z— 2

For R < 0,

£ £ Mv?2$?
_ e _ 21pl — 2 e ~ st
Tf —AF(ZsmG) M(w IR| — w (R+l)) (251n9) R? 0

Hence, we can rewrite the equation of motion as

6= — 22k + M%) g
M R?

And so, the fractional change in period is:

(T)-T _ 2k ) Mv? M (2n>4<_ 2(271 >>_ 2m* AZMv?
T\ |2k +mvz/R2 | T\ " akrz| T T ek P2\ ) V)T JA®

Thanks Terry Lam for providing this question.

~ End of Part 1 %&-152 ~
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