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All detailed answers should be written in the answer book.

PR VERE RE SRS .

There are 2 problems. Please answer each problem starting on a new page.
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Please answer on each page using a single column. Do not use two columns on a single page.
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Please answer on only one page of each sheet. Do not use both pages of the same sheet.
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Rough work can be written in the answer book. Please cross out the rough work after answering the questions. No working
sheets for rough work will be distributed.
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If the answer book is not enough for your work, you can raise your hand. Extra answer books will be provided. Your name and

examination number should be written on all answer books.
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Problem 1: Golfer’s Nightmare [30 pt] [BJRE 1: 5/REBKFHIERF [30 47]

What happens when a golf ball rolls along the inner vertical wall of the cylindrical hole under gravity? Normally, one thinks the
ball will go in and never come back up. However, it is often observed that the ball first rolls down along the wall and but then
it rolls back up without touching the bottom of the hole.
FEESEAT @ SRR EEP RN N E BERIN 2L B4 2 BE - MTANKER#FEMASEHR K

o A HEMETEIDEERREERT » NG XOR R EALFEE -

Some mathematics Identities may be useful in this problem:
TR Rl - X e AT R A -

i-(Bx)=B-(ExA)=¢- (AxB)
Ax(BxC)=(A-C)B- (i B)E)

To understand this phenomenon, we consider a ball rolls without slipping along the vertical wall of a cylindrical hole at all
time. The hole has a depth H and radius R. The ball is spherically symmetrical, has a mass m, a radius r and a moment of
inertia | = Kmr?, where K is a numerical constant that depends on the mass distribution inside the ball, such as K = 2/5 for
a uniform sphere and K = 2/3 for a spherical thin shell, etc. Let

7 be the position vector of the center of the ball;

@ be the angular velocity vector of the rotation of the ball;

g be the constant acceleration due to gravity pointing towards - z direction, i.e. § = —g &,
We ignore air friction in this problem.
N T EEXIEIS » BATEE— D ERERE RN EERE e TE MR D)  JFAREEN H » 2 R « BEERN
PRy BATTE m o 8 r RIEIMHAENT = Kmr? > Hep K2 —MUEE L BUATERNERIBE 376 - 1 T35
SERIAK = 2/5 » WTERIHRK = 2/3% - &

7FHBROIIIERR

@ NERATIERE R E

g NEISHEREENEE » 517 -2zJ55 > Blg=—-gé, -
FEXANAE T - Hedl RN 22 =B -

The situation is shown in Figure 1 below in cylindrical coordinates. Point C is the center of the ball. Point P is the contact point
between the ball and the wall. The basis vectors €, and &, are the basis vectors in cylindrical coordinates (p, ¢, z), where p is
the perpendicular distance from C to the z-axis, ¢ is the azimuthal angle measured from x-axis and z is the vertical distance of
C from the xy-plane containing the origin 0. Given the basis vectors in cylindrical coordinates as

é,=cos¢pi+singj, ép = —singpi+cosdj, é, =k
where i, j and k are the unit vectors of the Cartesian coordinates along x, y and z axis, respectively.

A 1R > (ERERARRRFTOR » R0 BRI FL » 2P BRSNS - AR E &, T &y B ALIT £
(p, ¢, z) THYELRE > B p B C 5 z VRS - ¢ @MHINENTTA > 2z /& C FIEEFE A 0 1Y xy VY
e FLIEES LGB AAAT R FAVERE N ¢

é,=cos¢pi+singj, ép = —singpi+cosdj, é, =k
Hoep 6, § fl k S BIRERRAAT S, y Iz I A AL R &
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/e Figure 1. (a) The ball
and the cylinder. (b) Top
s Ne S view of the situation.
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(b) THTHHL ]
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PART I: No friction between the ball and the wall. 5£—347 : BRAIE 7 [6 )G EEH#E -

Firstly, we begin with a case where the wall and the ball are frictionless.

Bt BRI A RN LS -

Suppose the force exerting on the ball by the wall at the contact point P is F= —Nép which is only the normal force.

BARAE BRSP4 » BOHERMEANAT ST F = —Né, » ARk -

Write down the position vector of point C in terms of m, g, R, 7, ¢, z, their derivatives and basis vectors 1 Points
(a) in cylindrical coordinates. 14

Hm g,R,1, ¢,z RHSERBAEL R TVEREF A C I ERE -

Given the initial condition: at time t = 0, z(0) = H, $(0) = 0, 2(0) = 0 and $(0) = Q > 0. Find ¢, z
and N as a function of t. 2 Points
LRSI ARt = 08 > 2(0) = H > ¢(0) =0+ 2(0)=0 M) =0 >0 ¢,z A | 2%

N {E7 ¢ IR -

PART ll: Rolling without slipping on the wall 5§ | #47 : SR RAIAET]
Setting up the problem [A]Fii% &
As we see in PART I, without friction, obviously, the ball will only accelerate downward. Now, we consider the ball is rolling

without slipping on the wall surface. Suppose the forces exerting on the ball by the wall at the contact point P include the
normal force and the static friction as
IEMIFAHE S — B R EFINVIE - S AEEEN - BREARSE TR - IAE - el 1B BRI | B shfRD) -
AR IE e 25 P AANERIE NG ) B A I SR EEEE ] » TR

F =—Né, +Fyéy +Fe,
Using cylindrical coordinates, let the position of the center of mass (CM) of the ball as
{EF AT 2 o BRIV OMLE

7 =pé, +zé,

and the angular velocity vector of the ball with respect to the CM as
FAESS o O BR A R R &

@ =Wy, + wypéy + w,é,
Answer the following questions in terms of m, g, R, 7, ¢$,z, N, I, Fyp, Fy, wp, 0y, W, and their derivatives.

E%\gﬂj‘ ’ }EH m, g; RI r, ¢J z, I: Nl F¢l F‘z: wpl a)(b; wz&ﬁ%éﬁ@gj/y\_ﬁ‘rﬂ%& °

(© Find the gquaﬁons_of motion describing the CM of the ball. 3 Points
PR AR B LIS BIRY TR 35

(d Write down a set of differential equations for Wp, W and w,. 3 Points
G w,, wg Mo, AT - 35

(e Write d9w_n r:aﬂtjations of the rolling without slipping condition. 2 Points
SRR TR - 24}

Solving the problem f#&H




Find, from the equations of motion, that the rate of change of the z-component (vertical) of the total 3 Points
(f) angular momentum of the ball with respective to the origin 0.

MBI GRE PR TS 0 BUE A B 2z 08 (FEEH) AVEEX - 37

Consider the initial condition that at the top of the hole as at time t = 0, z(0) = H, ¢(0) = 0, z(0) = 0 and $(0) = Q > 0.
FIEIGSRM  AEEN TS - BIEE ¢ = 08f > z(0)=H > ¢(0)=0-p=R—71> 2(0)=0H $(0)=2>0-

() Show that the vertical motion of the ball is a simple harmonic motion. 3 Points
8 | iR E AR R - 39

Since the vertical motion is a SHM, if the golf ball has a tiny non-zero initial downward motion at the top of the hole, the ball
will first roll down and, at the time that the golfer is happy about finishing the hole, the ball will come back up and out again.
That is the golfer’s nightmare!

HTEEZIEEIEE - R S/REBRIEFENINEA — MU NI FEZ) WA T8 - BN ERGEREER R
3l e RRERFRDVEREE TR 4 BREFR A EHERNERR - X2 s /R FAYEES |

Consider the ball is a uniform solid sphere, i.e. K = %

FEHREMETRLIK > BIK = é o

Find the angular frequency of the vertical SHM, Q,, in terms of the initial angular velocity of the CM of )
(h) the ball around the hole, Q. ! zoél;ts
PR H RS AR Q, - BT LSRR AR Q RFR -
Find minimum depth of the hole H,,, such that the ball will not touch the bottom of the hole in terms of 1 Points
(i) g and (. B 14>
PRV R NS Hyy » (ESERAN SARRDEE - FH g f1QKETR -
Interpretation of the phenomenon P S fi#
Where does the energy go? SEEEFET ?
Using energy conservation, find the magnitude of angular velocity w,, wg and w, of the ball at the 2 Points
1] lowest point T its vertical motion. B 2 4
(HFHAEESHE - Hul B B HE o RSN A AR B, ~ we F w, FYR/N -

What makes the ball go upward after getting into the hole? {2 ikEREH RS E _LIEE) ?

To help explaining this phenomenon, one can investigate the motion of the a—,
Ry

ball in a reference frame S’ (x', y’, z") that rotates about the z-axis with the
same angular velocity €, as the motion of the ball around the hole. In this
S’ frame, the ¢’ value of the position of the ball is fixed at ¢’ = 0.

N TR G IR —12% 4 S (Y, 2) TRz
8l » %ZF %5 z LIS EREUFAIZ I HEIRY A RS e, JeFs - X1
S' ZF o BRIV ERY ¢ EEIE N

¢'=0-
In this rotating frame, there are three fictitious forces including the Figure 2: Top view of the axes of the rotating
. -, frame S'. The fixed and rotating frames share the
centrifugal force, the Euler force Fy = —mQ X #' and the Coriolis force same origin and vertical axis: zand z'.
E2 ! EHSER S BHEILE o BEMERE
> = _d, S o o % H SRS e : 0
Fr = —-2mQ X Er’, where 7' is the position vector in S’ frame. ZERAZ MR SHIERH - 2 f0 25
d

ERAER S5 2 =NEB) - GREELT] « B By = —mO x 7 FIRHEBFIS) Fy = —2mQ x S7 - sop
RS BT E R -



Find the z-component of the centrifugal force of the entire ball.

(L gt prams 0 2 438 -

Find the z-component of the Euler force of the entire ball.

(21 i e A pRe L 01 2 40 -

Find the z-component of the Coriolis force of the entire ball.

(S) | g oA BR AT B BRI 60 2 45k -

3 Points

34

The rotation of the ball about the y’-axis (or the ¢p-componet in cylindrical coordinates) is coupled with the vertical motion of

the ball when it is rolling without slipping. Therefore, knowing the torque of this rotation will give us insight into why the ball

can move up and down under gravity. Let the angular velocity of the ball in this rotating frame as &'.

HERTCIEEIHIRENS - BRGE v HAVhERe (SRERAIRTEY ¢ 08 ) SEROVEEZSIMES - AL - TRk eI

FERFRR BN EA B AN 2 BRAEE R T E PLE N iEs) - REX MRS H AT aEeEs o -

Find the torque with respect to the CM of the ball due to centrifugal force.

WD) ot AR BRI L 4 -

Find the torque with respect to the CM of the ball due to Euler force.

121 s B e BRI o 46 =

(13) Find the torque with respect to the CM of the ball due to Coriolis force. 6 go;;ts
FRHVRE B BRI R T BRI Y S0 -
Identify the fictitious force and condition that yields a torque which corresponds to the ball rolling up
(14) | the wall.
PR A BRI RIS - IR N B HE [a)_EIRBIAVIETY -
Solution:
(a)
r=(R-1)é,+zé,
(b)
In general, in cylindrical coordinates d = (;')' = p(]f)z)ép + (pd) + 2p¢3)é¢ + Zé,
p=R—randi¥=R=0
ﬁnet = (=N, 0,—mg)
According to Newton’s 2 nd Law:
m(QR —1r)¢p? =N
m(R—-7)p =0
Z=-g
()
m(R—-1)p%2 =N (1a)
mQR —1r)p = Fy (1b)
mzZ =F, —mg (1c)

(d)
Take moment about the CM of the ball.

(,(jp 0 (i)p (ljp —d)l(l)¢
L=1{dy +(0)>< I(%)=1 o |+| ¢ lw,

Torque




We have

L=t
I6y, — Ipwy =0 (2a)
Iy + Ipw, = —TF, (2b)
I, =TFy (20)
(e)
(R-1)p+1w,=0 (3a)
Z—Twg =0 (3b)
(f)
Combining (1b) and (2c), we have
I, —mr(R—1r)¢p =0 4
Differentiating (3a) we have
(R=1)¢p = —Ta, (5)

Using (4) and (5), we find that
lo, + mrie, =0
2w, =0
= w, = constant
Together with (3a), we have
¢ = constant
Therefore, the z-component of the total angular momentum of the ball w.r.t. O

L0 = m(R —7)?¢ + [w, = constant



(g)
From (2a) and (3b),

. ¢z Q.
W, =—==2
r r
With the initial condition, wy = 0 when z = H, we have
Q
wp = —(z—H) ©)
Combining (1c), (2b), (3b) and (6) together with I = Kmr?, we have
: g 1
=——— Quw.-Z__—
Yo K+1 % 7Kk+1
Z K Q2 ( g 1
r K+1r “ rK+1
K g
=——0? —H+—
2= Tk +1 (z=t+ QZK)
The vertical motion is a SHM.
K
(h) Angular frequency = Q,, = e Q.
. el . . g . . . . . g
(i) the equilibriumisat zy = H — T The amplitude of the vertical oscillation is A = TS
Al A 29
The minimum H is Hy,, = 24 = T
(j) The gravitational potential energy is converted into the rotational energy along ép. Since w, is constant: w, = — ?Q

4 . o . . 1 02
and wg = ; = 0 at the lowest point, the gravitational potential energy can only be converted into Elwg as a)g =z (z—H)?

increases as z decreases from H. At the lowest point z = H — 24,

_5g 29
©p = Qr or KQr

(k1) Centrifugal force = —mf x (.(7 X F’) .Since O = Qé,r, the z-component is zero.
(k2) Euler force is zero as ) = 0
(k3) Coriolis force is zero along z’-axis since (ﬁ X ?’) 1é,
(11) Centrifugal force is radially outward; thus, its torque is zero.
(12) It is zero as Euler force is zero as a whole.
(13) The velocity of a point in the ball in the rotating frame is due to the spinning @’ of the ball only because the CM does not
move w.r.t. the rotating frame. We have
d

=1 =/

V=7
dt

where 7." is the position vector measured from the CM of the ball.

! !

=w X7,

T _zfdmf;’ X (ﬁ’x @' x?c’))
=2 [[am (@76 x @) - @- @G x72)

=_zfdm@?ﬁjmjxa)



=2 fpdxédyc’dzé Qzé(?cl X 5’)
The integration on x/, y/ and z..' is over the volume of the ball from its center.

Since the integration limit of z,.’ is symmetrical about z,’ = 0, only even function of z.' in the integrant will be non-zero.
Therefore, only the terms linear to 2’ in (#' X @") will survive. That is

Zi Wyt €y — ZpWyr 8y,

The torque becomes

T=— fpdx dyldz] Q z] (z Wy €y Z;a)yréxr)

-2 fpdxédyc’dzé Z’Z(Qa) 8y —Qw rex)
Using @ = Q é,,, we have
T=-2 fpdxédyc’dzé Zéz((—i x a@')

The integral over the volume of the ball with respect to the center of mass can be evaluated by cutting the ball into layers of
circular disk with radius (2 — z/2) and thickness dz_’

[ paxayeaz; 22

= pfn(rz —2.%)dz. 22
T

= pf n(r?z? — z,*)dz,

-r

_om ) r5 rs
_%ﬂr3n 3 5

So the torque is

‘F=zmr2( xﬂ)—l( ﬁ)

(14)
For non-zero wy,, the Coriolis force yields a torque along y' direction which gives the ball a rolling motion up and down along
the wall.

Qualitatively:

Coriolis force yields a torque along y’ direction which results in a vertical upward motion of the ball.

All fictitious forces are zero to the CM. Centrifugal and Euler force yield zero torque to the ball. However, the Coriolis force
provides non-zero torque to the ball and the magnitude of the torque is proportional to w,.

The Coriolis force is ¥ x (. At different points on the ball, the velocities are different. Since Q= Qé,, the velocity along z-axis
can be ignored.

Consider the rotation along —¢é,,.



gl
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The Coriolis forces on the top and bottom part of the ball are in opposite direction. These forces give the ball a net torque along
é¢. Rotation along é¢ is coupled with the vertical motion of the ball under the rolling without slipping condition. Therefore, the
Coriolis force imposed on w,, gives rise to the vertical motion of the ball.



Problem 2: Generation of ultrashort electromagnetic pulse[30 pts]

(A 2: #8465 BB RERK (30 47]

The Nobel Prize in Physics 2018 & 2023 were awarded to pioneers who contributed to “Method of generating high-intensity,
ultra-short optical pulses” and “Generation of attosecond pulses of light for the study of electron dynamics in matter”.
Attosecond pulse refers to electromagnetic field with a duration on the order of 10® second. The advent of attosecond
technique has made possible the study of ultrafast dynamics in physical, chemical and biological systems at a record high
temporal resolution. Thus far, the most widely used method to generate attosecond pulse (Nobel Prize in Physics 2023) is to rely
on the interaction of gas molecules and intensive femtosecond laser pulse (Nobel Prize in Physics 2018). In this question, we will
explore some important aspects of the short pulse generation.

2018 fFF1 2023 FiE N RYIBERET T HE A SRE . BRI TE " =4 B THRYRE 31 HZH T
SRR A EM L TR IEER . FRHOP RIS 4N 107 DE%T . FREARNHIES ISR E 3
ERYIE. CENEYRGFROBRINFRATRE. 25A1L, &OZEAMN~ERFHOR (2023 F£i& IRYIE
FR) NITERKESED T 552 CBUCHORIEEER (2018 FirIURYIEZER), EXNEEP, BRI
FHEBRBEAOPNERYIELE,

The following identity may be useful:
FEXAN A - XA E S A REA

f —aw? —iwt J ) = n t?
_ooe e W= /aexp ia
Physical constants Y3 ¥

Electric charge JTFEfaf: e = 1.60 X 1071° C

Electron mass LT[ &E m, = 9.11 x 10731 kg

Speed of light in vacuum EZZH11J5¢3# ¢ = 3.00 x 108 m/s
Planck constant IEHTEHHI h = 6.63 X 10734 Js

Part A: Ultrashort laser pulse #B%5 26k
The simplest form of pulsed electromagnetic field is a sinusoidal wave (center frequency w,) dressed in a Gaussian profile with
peak E, and a standard deviation of 7, /v2.

Bl BRI R 2R B ST E A T O N w I IR - (B By - PRAEZER 1, /V2 -

Please find the complex expression of a Gaussian signal in the time domain. Note that a Gaussian laser
pulse must have its electric field averages to zero over time. Show your answer satisfy the constraint 3 Points
above. 39

EHR ST E SRR NERERIAR - 1R BEEN R - sBuRothoray s PaE

Al

10



M < G IFBAIRAYE 20 e Lt/ -

The most commonly used laser for generation femtosecond pulses employs titanium-doped sapphire
(Ti:sapphire) crystal as its gain medium. It emits light with photon energy around 1.55 eV. Please find the
A2 expression of Gaussian pulse (Full-width at half maximum 35 fs in duration) out of such laser cavity.

i YA W BCOR Y BO B R B I E A (Tissapphire) ERIEHIE 57107  EAHDE
TREELYH 1.55 eV HY  iE Koot s ikior (CEamiy 35fs) By -

2 Points

24

A Gaussian pulse that is only dependent on time cannot propagate in real space. Consider a Gaussian pulse propagating in one
dimensional vacuum along the z-axis.
(R T I Rl ko AR SR ZE 1Rl P24 © R0 2 BlE — 2 2= TP iRy ko -

Please find the expression the electric field E(z, t) of a Gaussian pulse and show that your answer can

A3(1) indeed propagate. Hint: you may use the complex form to describe the propagating wave. 1 Points
B E IR ORI RAN E (2, ©) > HIEIRAVE ZEHSL AT UGS 19

R ¢ R DA EEOP R R -
Please find the expression of the electric field E'(t) if it is a Gaussian pulse after propagating at a distance 1 Points
A3(2) | L in medium of the frequency dependent refractive index n(w). 143

WMFTEEKA > FEAFCRRIAVITER n(w) B/ AR L 5 > K5 E() BIRAR -

Part B: Dispersion t2§¢

Before entering the attosecond (1078 s) regime, it historically took numerous effort of researchers to just generate femtosecond
pulses (1 fs = 107%s), which now can be readily obtained from a standard Ti:sapphire laser and serve as the starting point to
generate the even shorter attosecond pulse. One challenge at the time was to devise a laser cavity that can fight against the
strong dispersion arise from traversing the Ti:sapphire crystal, an indispensable element in which amplification takes place. The
dispersion here means the frequency dependent refractive index in the Ti:sapphire crystal, which has a strong absorption at 2.5
eV.

TESLBFORBE S HE AR RS (107%%s) i » 55 N AR BT T RE LS TIHFTa =& ibfkod (1fs=10"s) -
M > BERF 3 JEUAE B DABON 25 5 N ERTE B R0 3R 1S WEPRK A « 1 Wb Bk SO 2™ A SR AP R b i oA e 4a
FEIR o IRFTEE Wb Bk R R BT AR — APk B O B IR N I 25 BT (BRIE A o RAVIR BTN « X
HEAEEUETE TR E A SHEERITRER > £ 2.5 eV WAV B AARIRIIRUL -

Assuming the transition responsible for the absorption can be described with a classical model for an
oscillating bound electron (mass m) oscillating at a characteristic frequency (£1,) about a nucleus. In the
presence of an external AC E-field of amplitude E|, oscillating at single frequency w, please find the largest
possible displacement of the electron. The damping force of the oscillator can be described by f; =
—myv where v is the velocity of the oscillator and y is a single parameter to describe the total effect | 4 points
from energy loss of all kinds. 4 4y
BT 2.5eV HYEIRUTEREE » AT DURHIEIEAR Qo FISFE FIZIRGIVRA R 7 (FiE m) X
— LR BUERUSRARIA - TESMNE AR (FRIENEo » RN w ) WEIHIEILT - IEHRH AR
ATRENLRS - M2 i0iRshS 2RI E I T DA f = —myvSRiiial - Hop v BRIV - v &
METPEE E TR S MR NS -

Bl

Suppose the particle density of absorptive Ti3* centers is N. Find the polarization density P and the
corresponding dielectric function e(w), where P = g4(¢, — 1)E. Make a drawing of the frequency
dependent dielectric function £(w) and index of refraction n(w) from zero frequency all the way through | 4 Points
20,. 4453
RO L TR BRI TR HIN » SRARAL B P R L RIF 7 L i Se (@) ELPP = &) (e, —
1E - BB 1 B e(w) DURHTEHE n(w) - SERMEIREIZ /D 20, -

B2

11



ERZ A (1000% 25+ )
High reflection mirror
(100% reflective)

W75
Gain medium
FH RGeS (<100% 25 )
Output coupler
(<100% reflective)

Laser beam

BOEH

Pump source

g

Part C: Pulse broadening effect fix A& B 3 AL

A Gaussian pulse, of which the transient frequency is constant in the time domain, is referred to as a Fourier-transform-limited
pulse (7,,) and has the shortest possible duration at a given bandwidth. After propagating through a dispersive medium of
distance L, a transform-limited pulse will acquire a broadened pulse. It happens because the lasing frequency is close to the
strong absorption line of the gain medium at 2.5 eV, and the high-order dispersion (frequency dependent part in refractive index
n(w)) will start to take effect. (Hint: The dissipative part during propagation can be ignored.)

In this part, it is useful to define the propagating function

B(w) = n(a))% = By + Br(w — wp) + Br(w — wp)? + -
which can be expanded around the center frequency w, of the Gaussian pulse.
T [RIE AN EOR 2R 18 E B ARy s i ko 38 o F L Rk - BAELE T 0 T ATRE A EIHY A Y
BKTE T, o ZHURIRAOTE BB Y TR HRIEES L IS - FERSETEAIRK O « ZAEXFE SR RO EET 2.5 eV 1
T/ P RAYIRRU L - MM SESI EBEER (FriEE n(w) HSHFMERITET) o (R L REE R PR 77 7]

LI - )
BEih > AR TE S PR AL G TR RAETFAE TP O wo M AT R Tt

pw) = n(a))% ~ By + Pr(w — wp) + Bo(w — wo)? + -

W EAFTE) -

. . . [ L)? .
Show that the transform-limited pulse will broaden to a duration 7 =1, |1+ (aii ) , wWhere a is a
p

constant, 3, is the second-order propagation factor from expansion about the center frequency wg. (You 4 Points
Cc1 may ignore effect from third-order and above) 5 45

T NSRS E SRR LIS » HOPRUERE Y T = 7, [1+ L b @ AL
Br BB ARSI WHERBRT - (15208 = AL (& HEEFH9 5Tt

For an ultrafast femtosecond laser to oscillate in its stationary state, please come up with a design to 2 Points
Cc2 compensate for such pulse broadening effect. PPN

N T R WIBOtSHE eSS TR > B FRH — IR B SR R Rk o B -

Part D: High-harmonic generation of attosecond pulse ( EZiE R =4 FRFD KA )
Take a short femtosecond pulse from Ti:sapphire laser (center frequency w,) and focus it into a gas medium. One could generate

light at integer multiples of the driving frequency, often referred to as high-harmonic generation (HHG).

MEKERRDEEE (TOIR wo) SKAGERER OB IR EEI SR BT - 7] A wo HYREE ER B Aotk

12



5 BEMOSIOERT 4L (HHG) -

One critical step for HHG is to drive the bound charge of molecules in the non-perturbative regime to
initiate the ionization dynamics. If we take hydrogen molecules for HHG, please estimate the peak electric )
. . - 2 Points
D1 field strength required to initiate the process. 2 43
HHG FY— R0 BREAEIEMPIRE T W sh 73 TRV AR (e, DAAKSH sl T E o IRFA TR
ST/ HHG » &t A RO s i R AT AR I (E Fa s -
To allow radiation at new frequencies, please modify the oscillator model correspondingly and show your 4 Point
D2 modification is viable. 402; >
N T ARG AR BN E TR AR RS SRS SO AT THY -
Show how one could leverage the high-harmonic field to generate attosecond pulse. 2 Points
D3
VE TR UM AT FH S IR S A AR BT’ R SE R AP Fb o 29
Solution:
Al.
tZ
a(t) = Eye 5 cos(wot + @) (Real form)
tZ

a(t) = Ege el@ot+e0) (Complex form)

The average electric field

2
1 (T -5 Ey (T © 2 i
(a(t)) = 11m — E e Tei@it+0d gt = Iim =2 [ dt ﬁe_
2 T

wZ
) e—iwtei(w0t+(p0)dw
T—-> oo T T—->oo T TP

= li — d E— 4
o6 2T @ Tp ¢ _T

fooe_aa)ze—ia)tdw=\/§exp _i
o a 4a

o 2.2 T
E, 2V _ww® <f e—iwtei(wot""po)dt) =0

Here, we apply the identity,

A2

wo = 2nf = 27TE— = 2m X 375 X 10*2Hz
0 h

FWHM is 35fs = 35 x 107155,

_35fs?
e =E: In2 =

35fs

=17, =42x107'2s
Tp

tZ
a(t) = Ege (42x107%25)% cos(2m x 375 x 10*2Hz X t + @)

fooe_aa)ze—ia)tdw=\/§exp _i
o a 4a
A3(1)
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© 2(w— wg)?\ (., @
E(Z’ t) = Eof exp <_ %)el(wt—?z) dw

where wy = ck

02E w? Th(w — wo) i(wt-22
OZE(Z t) f < 75 (0 — wo)? ) pilwt-k2) g,
4
02E 62E T3 (0 — 00)?\ (-2,
> 5 ~raw = ( ) <_+e( oo

Which satisfies the wave equation.
A3(2)

oo 2 w—w 2 . w
E(t) = Eof exp <— —Tp( 7 o) >e‘(“’t_"?L) dw

B1: Equation of motion for harmonic oscillator

mi + myx + mQ3x = —eEye'®t
Trail solution: x(t) = X et
= (—-mw? + iomy + mQ3)X, = —ekE,
Therefore, the largest possible displacement of the electron is
1
= X = ek,

m(w? — Q2) — iwmy
B2: Polarization is defined as

P = —ex(t) = ! Ne2Egeior = (N : E(t)
- A= m(w? — Q%) — iwmy ¢ B =\ T Q% — w?) +iyw

Dielectric function is given by
P =¢y(e, — 1)E

+

1
<eom> Q% — w?) +iyw

C1: Given the propagation function

plw) = n(a))% ~ By + Pr(w — wp) + Ba(w — wp)* +



1 (® . . 1« . ; :
Aoue(t) = Ef ain(w)ei@wte=BWlgy = Ef Qi (W) € (@0t =PoL) g=ilw=w0)t g =iL(B, (0=w0)+; (w=w0)?) g
T5(w — wg)?

aout(t) = ei((uot—ﬁoL) ﬂf exp <_ >e_i(“)_“’o)te_iL(ﬁ1(w—wo)+ﬁz(w—w0)2) dw
21 )_o

4
Define w' = w — w,,
E ® Tza)’z , 0 3
Apye (1) =2—Oei(“’0t‘30”f exp| — p4 e“"‘"e_‘L(ﬁl“’ B0 )dw’
T —o0

E @ 20" ) 0o @
=_Oei(w0t—ﬁoL)f exp <_ p >e_iw’te—LL(ﬁ1w +B,0 )da)'

2m 4
Eo i(wot—PBoL) ” TIZ’ ; 12 ) —i(t+LB,)w’ 4,
=g oelweho f exp(—| +ilBy)w' e F@" dw
Eo i(wot—PBoL) * 12\ _—ibw' ’
=o€ ot=Po f exp(—aw ) e dw
E, . e ib \*\ _b?
= — gi(wot=PFol) f exp | — (\/Ew’ + —) e 4adw'
21 o P 2Va

2

. b t + LpBy)?
o el@ot=Fol) exp <— E) o exp(iwgt) exp <— ( A )>

(T2 + 4iLp,

(t+LB%  t?(t2 —4ilp,) t2
3 ~ ~ 2
(75 +4iLB2)  (vh + (161267)) 24 161757
p

+ oscillating terms

16B212
4
p

= Tour ® Tp |1+ .

C2: Commonly used “insertion device” is prism compressor (lower panel). Grating compressor (upper panel), in principle,

can work as well if the diffraction grating can be optimized to near-unity. Full score of 2 points gives to any one of the two

scheme or their equivalence.
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D1: For ionization to occur, momentum acquired by particle in one cycle of field should exceed that converted from work
function of bound charge (-13.6eV),

ek
P momentum acquired by particle in one cycle of electric field > vZmW

w %4 GV
~3x%x101° —=30—
m m

>F>w

V2mw
eE

Remark: We can define the Keldysh parameter wherey = w <1

D2: In the strong field limit, the oscillation becomes anharmonic as the potential energy of bound charge follows the model
of anharmonic oscillator,
u(x) = ayx? + ax3 + -
mi = —2a,x — 3ayx?% + eEge'®ot + 0(x*)
m¥ + ajx = ayx? + eEyel@ot

First order:
mi + ajx = eEye'®ot = x; o Ejel@ot
2" order:
X =x1+ x5 (x; K xq)
m(, + %5) + i (g + x3) = ay(xy + x)% + - = ay (X2 + 2x1x, + x3) + -
= mx, + ajx, ~ apx?
= X, & x? o« EZei?®@ot

The stronger the field is, the high order terms gets more pronounced. In general, we can show that

Xy X Effein@ot

D3: If oscillator is anharmonic, the n-th order dipole is x E(’,‘ei"wot,

t2

Suppose E, « e_%,

t2

_nt? (Tp)z
= pM) e 3 einwot — Jn einwot

~ ENF OF Paper 2 & "5 ~
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