第 I 部分 选择题 (16×3分)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
D	С	Е	Α	В	E	Α	С	E	С	D	В	Е	Α	В	D

第Ⅱ部分	简答题 (52 分)	
17(a)	请写出主要步骤	
	By similar triangles, distance from center of small disk to O is l . $\tan \theta = \frac{a}{l}$	
	$=\frac{a}{\sqrt{24}a}=\frac{1}{\sqrt{24}}$	

$$\theta = \tan^{-1} \frac{1}{\sqrt{24}} = 0.201 \text{ rad}$$

 $\theta =$

/4

17(b) 请写出主要步骤

Let R_1 be the radius of the circles traversed by small disc.

$$R_1 = \sqrt{l^2 + a^2}$$

$$= \sqrt{\left(\sqrt{24} \, a\right)^2 + a^2} = 5 \, a$$

Let *t* be the time taken by the small disc to complete 1 revolution.

In this time, distance travelled by the disc = circumference of the disc = $2\pi a$.

Let θ' be the angle traversed by small disc in the circular trajectory in time t.

$$\theta' = \frac{\text{arc length}}{\text{radius of circle}}$$

$$= \frac{2\pi a}{5a} = \frac{2\pi}{5}$$

OR

Let R_2 be the radius of the circles traversed by large disc.

$$R_2 = \sqrt{(2l)^2 + (2a)^2} = 2\sqrt{(\sqrt{24} a)^2 + a^2} = 10 a$$

Let t be the time taken by the large disc to complete 1 revolution. In this time, distance travelled by the disc = circumference of the disc = $4\pi a$.

Let θ' be the angle traversed by small disc in the circular trajectory in time t.

$$\theta' = \frac{\text{arc length}}{\text{radius of circle}} = \frac{4\pi a}{10a} = \frac{2\pi}{5}$$

Angular speed along *z*-axis in time *t*:

$$\omega' = \frac{\theta}{t}$$

$$=\frac{\frac{2\pi}{5}}{\frac{2\pi}{\omega}}=\frac{\omega}{5}$$

组件质心绕 z轴的角速率 = $\frac{\omega}{5}$

17(c) 请写出主要步骤

Angular speed of the center of mass is the same:

$$\omega' = \frac{\omega}{5}$$

Magnitude of angular momentum of the center of mass of the assembly about point O.

$$\overline{L}_{COM,O} = \overline{r}_{COM} \times M \overline{V}_{COM}$$

 \overline{r}_{COM} = position vector from point O to COM

$$r_{COM} = \frac{lm + (2l)4m}{5m}$$
$$= \frac{9l}{5}$$

As the assembly is rotating about z-axis, the center of mass of the assembly traverses a circle of radius R.

$$R = r_{COM} \cos \theta$$
$$= \frac{9l}{5} \frac{\sqrt{24}}{5}$$

The linear velocity of the center of mass

$$V_{COM} = R\omega'$$
$$= \frac{9l\sqrt{24}\omega}{5\sqrt{5}}$$

Therefore, the magnitude of the angular momentum of the COM of the assembly about point O is

$$L_{COM,O} = \frac{9l}{5} 5m \frac{9l}{5} \frac{\sqrt{24}\omega}{5}$$
$$= \frac{81\sqrt{24}}{125} m\omega l^2$$

Use $l = \sqrt{24}a$

$$L_{COM,O} = \frac{1944\sqrt{24}}{125}m\omega a^2$$

绕点
$$O$$
 的轨道角动量的大小 = $\frac{1944\sqrt{24}}{125}m\omega a^2$

18(c) 请写出主要步骤

We have

Energy conservation:

$$mv_n^2 + MV_n^2 = m(-v_{n+1})^2 + MV_{n+1}^2$$
$$\left(\sqrt{m}v_n\right)^2 + \left(\sqrt{M}V_n\right)^2 = \left(\sqrt{m}(-v_{n+1})\right)^2 + \left(\sqrt{M}V_{n+1}\right)^2$$

Momentum conservation:

$$\begin{split} mv_n + MV_n &= m(-v_{n+1}) + MV_{n+1} \\ \sqrt{m} \left(\sqrt{m} v_n \right) + \sqrt{M} \left(\sqrt{M} V_n \right) &= \sqrt{m} \left(\sqrt{m} (-v_{n+1}) \right) + \sqrt{M} \left(\sqrt{M} V_{n+1} \right) \end{split}$$

By energy conservation, for all n, $(\sqrt{M}V_n, \sqrt{m}v_n)$ must lie on a circle with radius $-\sqrt{M}U$ centered at the origin.

By momentum conservation,

$$\tan \frac{\theta}{2} = \frac{\sqrt{M}V_{n+1} - \sqrt{M}V_n}{\sqrt{m}v_n - \sqrt{m}(-v_{n+1})}$$

$$= \sqrt{\frac{m}{M}}$$

$$\tan \theta = \frac{2\tan\frac{\theta}{2}}{1 - \tan^2\frac{\theta}{2}}$$

$$= \frac{2\sqrt{m/M}}{1 - m/M} = \frac{2\sqrt{Mm}}{M - m}$$

It can be seen that for consecutive collisions between the two blocks, the angular position increases by θ , and is $n\theta$ just before the n^{th} collision. Hence

$$\begin{pmatrix} \sqrt{m}v_n \\ \sqrt{M}V_n \end{pmatrix} = \begin{pmatrix} -\sqrt{M}U\sin n\theta \\ \sqrt{M}U\cos n\theta \end{pmatrix}$$

$$\binom{v_n}{V_n} = \left(-\sqrt{\frac{M}{m}}\sin n\theta\right)$$

$$\cos n\theta$$

	$\begin{cases} v_n = -\sqrt{\frac{M}{m}}U\sin\left(n\tan^{-1}\frac{2\sqrt{Mm}}{M-m}\right) \\ V_n = U\cos\left(n\tan^{-1}\frac{2\sqrt{Mm}}{M-m}\right) \end{cases}$	
	 (写出含 m , M 和 U 的表达式)	
18(d)	请写出主要证明步骤 $\operatorname{Solve} V_n \geq v_n \\ -\cos n\theta \geq \sqrt{\frac{M}{m}} \sin n\theta$	
	$\tan \theta = \frac{2\sqrt{Mm}}{M-m}$	
	For $M\gg m$, the inequality can be satisfied for the first time when $n\theta=\pi$, i.e., $n\sim\pi/\theta$	
	N = 2n	
	$\sim 2\pi/\theta$ However, $\theta \approx \tan \theta$	
	$pprox 2\sqrt{rac{m}{M}}$	
	Hence $N \sim \frac{2\pi}{2\sqrt{\frac{m}{M}}} = \pi \sqrt{\frac{M}{m}}$	
	渐近线的斜率 = π	/7